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To survive and thrive in today’s fast-changing workplace, engineers will need to become adaptive experts. Undergraduate

education can play a critical role in improving engineering students’ adaptive skills that are important for their future

productivity. This education must integrate practice and mastery of Adaptive Expertise (AE) dimensions in the

engineering curriculum. In this study we investigated the role of various factors on the undergraduate engineering

students’ manifestation of AE through contextual Computer-AidedDesign (CAD) exercises. A total of 390 students from

two universities were asked to model either a stylized or familiar component that they brought from home as a contextual

exercise. In both cases, we conducted pre and post interviews with the students to capture how they approached their tasks

and overcame any challenges. Effects of the contextualized activity on students’ AE characteristics were investigated. In

addition, utilizing the Adaptive Expertise Survey (AES), we collected data from over 600 participants spanning students

over three years from two institutions as well as industry professionals. We found that the overall manifestation of AE

during CAD exercises was significantly correlated with overall total AES scores. Participants’ increased experience and

education were shown to be associated with their increased AE captured through both the survey administrations and

interview sessions. Contextual CADmodeling exercises had an effect on AEmanifestations. Our findings provide insights

into the research conducted to enhance CAD instruction. We report that multiple perspectives, goals and beliefs, and

metacognitive skills are indicators of developing AE and that educators should consider promoting those skills in CAD

education.
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1. Introduction

Today’s engineering graduate will enter a work-

force that is rapidly changing and adapting; from

the ‘‘gig’’ economy to new business models, their

careers will likely involve adapting to these changes.

To be innovative, lifelong learners requires that

they be able to adapt their expertise [1, 2]. In several

fields, students have to be prepared to use modern

computer-aided design (CAD) tools. A student who
is not knowledgeable in using CAD tools will be

unable to succeed in the coming model-based

enterprise [3]. CAD tools allow engineers to turn

ideas and design intent into digital artifacts that

allow for analysis and production. Proper commu-

nication of design intent is critical inCADmodeling

[4]. Design is at the core of engineering education

[5]. Swiftly changing industries and CAD platforms
demand engineering curricula to educate students

so that their skills are transferable to other pro-

blems in the field.
Unfortunately, most current CAD instruction is

focused on teaching declarative knowledge – the

steps necessary to perform certain tasks in specific

software platforms [6]. However, it is strategic or

procedural knowledge that can be adapted to new

situations or tasks [7]. Atman, et al. [8] find that

even when students ‘‘know’’ something, they may

not apply it appropriately in new situations; their
expertise is not adaptable. The National Academy

of Engineering report about how to educate the

engineer of the future suggests a better alignment

between what engineering students are taught and

what they will be faced with in industry [9]. The

CAD expertise students develop at the undergrad-

uate level should be adaptive in nature and be

extendable to engineering design in general.
To achieve the goal of sustainable productivity, it
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is essential to promote Adaptive Expertise (AE) in

engineering education. Wineburg [10] defines AE

as: ‘‘the ability to apply, adapt, and otherwise

stretch knowledge so that it addresses new situa-

tions – often situations in which key knowledge is

lacking’’. Brophy, et al. [1] define the interaction of
efficient and innovative uses of knowledge as AE.

Van Der Heijden [11] defines AE as the flexible or

growth dimension of expertise. Better understand-

ing AE skills and the activities that promote AEwill

allow students to transfer their knowledge to novel

situations in a creative, innovative, and efficient

way. This will produce more adaptive and effective

engineers prepared for challenging and dynamic
careers in industry and academia. As noted in a

review of expertise [12], the learner, the task, and

the environment call all affect AE and its manifesta-

tions. Understanding these factors can promote

better educational and extracurricular activities to

enhance AE.

In light of the above-mentioned issues and the

related literature; our purpose in this study was to
investigate the role of various factors on the man-

ifestation of AE through contextual CAD exercises.

We aimed at capturing students’ AE characteristics

while they were using a CAD tool through examin-

ing a contextualized activity. The effect of the

contextualized activity on students’ AE character-

istics was investigated. We scrutinized which AE

characteristics were revealed during the pre and
post exercise interviews. Next, we compared the

results with a survey that presents students’ AES

scores. In addition, the effect of differences in AE

manifestation between students completed different

CAD activities (stylized vs contextualized) was

assessed. The role of student seniority (e.g., fresh-

man versus upperclassmen) was assessed as it was a

comparison between practicing engineers and stu-
dents as well. The two main research questions we

asked in this work are as follows:

� What were the effects of the contextualized CAD
exercises on students’ AE manifestations?

� What were the relations between engineering

students’ seniority and their observable AE char-

acteristics?

� What were the relations between the AE char-

acteristics of engineering students’ and engineers

in industry?

To answer the three research questions; we explored

how the factors contributed to differences in the AE

behaviors of students. To understand students’ AE
characteristics and how they might have developed,

we designed and delivered CAD exercises augmen-

ted with contextual activities. We documented the

revealed AE characteristics during the pre and post

CAD exercise interviews and compared them to a

survey that tabulated students’ AE survey scores

along with demographic information and profes-

sional experiences.

2. Background

In the present study, we examined the role of

various factors on the manifestation of AE. These

can be broadly defined as those related to the

learning environment, the learner, and activities
[12]. In the next section, we define and summarize

previous work in the area of AE, the aspects of AE,

and the factors that can lead to or inhibit the

manifestation of AE.

2.1 Adaptive Expertise

AE is the term that defines capabilities of both being

innovative and adaptive to new challenges while

also having content knowledge associated with

expertise [13]. The key to expertise is the mastery
of concepts that allow for deep understanding of

that information, transforming it from a set of facts

into usable knowledge. The ability to process infor-

mation quickly and recognize related solutions to

problems in a particular area and/or domain of

knowledge is known as expertise. Hatano and

Inagaki [14] defined two types of expertise to

make the distinction clearer: ‘‘routine expertise’’
and ‘‘adaptive expertise’’. Adaptive experts are

those who perform procedural skills efficiently

and understand the meaning of the skills and

nature of their object. Routine experts simply

learn to perform a skill faster and more accurately,

without constructing conceptual knowledge, and

can even perform a task through automation of

the procedure. The fluency of finding related solu-
tions to problems only makes students ‘‘routine’’

experts for specific problems. However, routine

expertise does not mean students have flexible

knowledge that may be needed to invent new

ways to solve familiar problems and innovative

skills to identify new problems [1]. While the devel-

opment of routine expertise is valuable in usual

settings, novel problem solving based on innovative
aspects of the learning context and students’ char-

acteristics is necessary for efficient instruction. AE

is the term that captures innovation and adaptivity

along with expertise [13].

Individuals with adaptive expertise acquire the

skills to solve novel problems. Because the medical

profession is constantly changing and is seen as a

field that requires adaptive expertise to be able to
deal with these novel problems [15]; some worthy

examples of the differences between routine and

adaptive experts are medical diagnosis (e.g., [16,

17]). Raufaste, et al. [16] studied the adaptiveness of

radiologists at different levels of experience in
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examining radiology scans. They evaluated partici-

pants from different levels of expertise: novices,

intermediates, basic experts, and super experts.

Participants interpreted x-rays that indicated 4

possible correct diagnoses but had several mislead-

ing clues. Results showed that novices and basic
experts listed the fewest correct diagnoses, while

super experts listed the most. These results as are

interpreted as indicating a qualitative difference

between the experiences of basic and super experts

(similar to routine and adaptive experts). The basic

experts had learned to efficiently determine themost

likely diagnosis, but missed subtler possibilities.

The basic and super experts had equal knowledge
(though the super experts had more years of experi-

ence); the super experts were medical school faculty

members. These experiences seem likely to develop

the aptitudes and abilities that routine experts lack

– flexibility, metacognition, and pursuit of extended

learning experiences and challenging situations.

There have been several instruments developed

to measure adaptive expertise; Bohle Carbonell, et
al. [18] assess several. They note that the instru-

ments developed by Van Der Heijden [11] and

Fisher and Peterson [19] best conceptualize adap-

tive expertise. The VanDer Heijden [11] instrument

includes five dimensions: knowledge, metacogni-

tion, sill requirements, social recognition, and

growth and flexibility. The Fisher and Peterson

[19] instrument includes four dimensions: multiple
perspectives, metacognition, goals and beliefs, and

epistemology. Ferguson et al. [20] propose an

instrument with three dimensions: domain agility,

self-assessed innovative practices, and orientation

to innovation. Given its engineering focus, depth of

background research for development, and initial

validation, we used the Fisher and Peterson [19]

instrument. Other work has used adapted versions
[18, 21] of the Fisher and Peterson [19] instrument;

preliminary work by the authors also used this

instrument [22].

2.2 Aspects of Adaptive Expertise

Engineering design is often used to evaluate the

effect of expertise on outcomes [8, 23–26]. While
CAD tools are often part of the engineering design

process, they are not the entirety of the process and

in some cases can constrain design creativity [27,

28]; designersmay only dowhat is available with the

CAD tools that they know how to use. Creativity is

one of the important aspects of AE [19]. Through

an extensive literature review, Fisher and Peterson

[19] identified four primary aspects of adaptive
expertise (as mentioned above and detailed here):

(a) multiple perspectives (MP), which is the ability

to recognize situations where creativity is possible,

(b) metacognitive self-assessment (MSA) referring

to students’ use of diverse techniques to self-assess

and monitor their own understanding and perfor-

mance, (c) goals and beliefs (GB) defining the views

that students have concerning their learning goals

and the nature of expertise, and (d) epistemology

(EP) referring to how individuals perceive the
nature of knowledge.

‘‘Multiple perspectives’’ signifies the willingness

of students to use a variety of representations and

approaches when working on a problem [14]. This

means students who have MP characteristic know

that there may be more than one way to analyze,

approach, and solve problems. In addition, they are

open to new information and new ways of applying
this information to the situations where creativity is

possible [19]. These students can act flexibly in

novel situations.

‘‘Metacognitive self-assessment’’ characteristics

help students monitor their problem solving, ques-

tion limitations in their knowledge, and avoid

simple interpretations of a problem [29]. People

who have MSA ability can use various techniques
to self-assess and monitor personal understanding

and performance. They can use different represen-

tations and methods to solve a problem and can

question their own understanding. Donovan, et al.

[30] find that a ‘‘metacognitive’’ approach to teach-

ing can help students learn to take charge of their

own learning by defining learning goals and mon-

itoring their progress in achieving them.
‘‘Goals and Beliefs’’ defines the views that stu-

dents have concerning their learning goals. Stu-

dents who have GB for their learning view

challenges as an opportunity for growth and are

able to proceed in the face of uncertainty [19]. In

addition, student beliefs about learning, motiva-

tion, and metacognition are all dimensions that

focus on setting goals and working to achieve
them [29]. According to Kalyuga [2], increased

levels of learner control over learning tasks and

selecting their learning goals are considered as an

important condition for the development of meta-

cognitive and self-regulation skills.

‘‘Epistemology’’ is a metacognitive process; it is

one’s beliefs on knowledge, and attitudes towards

the nature of the knowledge in the field, and its
generation [31]. Students who demonstrate the EP

attribute, perceive knowledge as an evolving entity

rather than static; they realize the need to continu-

ally practice knowledge [19].

In order for students to develop these skills, it is

important to create learning environments that

support the development of cognitive, intraperso-

nal, and interpersonal competencies as a part of
AE. Therefore, CADactivities introducing students

to new challenges with contextual exercises rather

than stylistic textbook exercises can examine if a
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student can effectively transfer skills to the new

situation. Moreover, introducing students to new

challenges in CAD modeling can help ensure CAD

tools do not inhibit creativity and promote adaptive

expertise characteristics.

2.3 Factors Affecting Adaptive Expertise

Learner characteristics can affect the manifestation

of adaptive expertise. Younger students may show

more marked gains from interventions designed to

promote adaptive expertise [32]. However, more

senior students tend to have more of the innovative

and efficient behavior associated with adaptive
expertise [26]. Intrinsic motivation and self-efficacy

are also associated with increased adaptive exper-

tise [33].

The learning environment can also influence the

manifestation of adaptive expertise. The majority

of engineering education has traditionally been

focused on content; however, problem-based learn-

ing, namely the process, is more aligned with
adaptive expertise [34]. Pierrakos, et al. [35] also

show that a principles-based capstone course is

more likely to produce adaptive expertise behaviors

than a traditional lecture course. There are also

examples from math, that show focus on content is

detrimental to the development of adaptive exper-

tise [36].Martin [37] also shows that amore inquiry-

based (problem-based, case-based, authentic)
environment leads to improved adaptive expertise

as opposed to a lecture-based one. Task variety has

been shown as important for developing adaptive

expertise [18]. The How People Learn Framework

has been shown to improve the manifestation of

adaptive expertise [38]. This framework states that

an ideal learning environment includes character-

istics of knowledge, learner, assessment, and
community centeredness. Learner-centeredness

characteristic emphasize exploring students’ prior

knowledge and interest and building the learning

activity that properly addresses students’ content

understanding trajectory and personal interest.

This personal interest provides the student with

contextual learning opportunities.

2.4 Contextual Learner-centered Exercises

Contextual learning emphasizes problem solving

and the need for education to take place in multiple

contexts. This helps students become self-regulated

and apply knowledge to the contexts of their lives

[39]. Students learn more effectively when the

activity they engage in has a personal meaning to

them [40]. In a CAD instructional context, a con-
textualized activity can include designing a product

that has direct connections to the students’ daily life

activities or their personal interest. When designing

during a contextual exercise, it is important to ask if

the task involve problems that require the students

to use their knowledge creatively to find a solution

and if the exercise is an engaging learning experi-

ence [41]. The CAD exercise presented in this work

is incorporates these contextual learning principles.

According to Rogoff and Gardner [42], scaffold-
ing within a contextual learning activity is effective

in guiding the transfer of knowledge and skills from

more familiar contexts, so assisting the learner to

make connections within the context of the activity.

Contextual Learning is based on a constructivist

theory of teaching and learning that argues that

humans generate knowledge and meaning from an

interaction between their experiences and their
ideas [43]. According to contextual learning

theory, learning occurs only when students process

new information or knowledge in such a way that it

makes sense to them in their own frames of refer-

ence (their own inner worlds of memory and

experiences) [44]. Contextualized learning could

be used to encourage learners to adapt different

levels of uncertainty, and to make decisions about
adaptive plans and responses through the use of

diverse reasonable scenarios [45].

Learning science research has documented the

positive impact of learner-centered instructional

strategies and contextual exercises on students’

cognitive and affective domains [40]. Learner-cen-

tered characteristics highlight discovering students’

prior knowledge and interest and constructing the
learning activity that properly addresses students’

content understanding trajectory and personal

interest. Curriculum and instruction designed to

nurture AE characteristics by engaging students in

real-life problems can provide an important model

of successful learning [40]. Bodnar, et al. [46]

present a case showing the benefits of an experi-

ential learning activity related to tissue engineering
in developing adaptive expertise. Hatano and Oura

[47] noted ‘‘while basic schools cannot make stu-

dents real experts, they can place students on a

trajectory towards expertise or prepare them for

future learning’’ (p. 28).

3. Methods

3.1 Participants and Data Collection

The initial stage of this work consisted of collecting

data using the Fisher and Peterson [19] adaptive

expertise survey (AES) from students at Texas

A&M University (TAMU) and Prairie View

A&M University (PVAMU) as well as from indus-
try professionals. The primary data for the CAD

portion of the work were collected from different

groups of students enrolled in CAD courses at the

same two universities. A total 606 students and 23

industry professionals completed the AES. A total
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of 390 students participated in the CAD modeling

activities. The CAD course at PVAMU comprised
mostly freshman-level students, while the course at

TAMU comprised junior and senior level students.

The demographic breakdown for participants in the

CAD modeling portion of the work is shown in

Table 1.

3.2 Adaptive Expertise Survey (AES) and

Demographic Data

The Fisher and Peterson [19] AES is a 42 items 6-

point Likert-scale. All students and industry parti-

cipants completed the AES and a demographic
questionnaire designed by the authors. Demo-

graphic questionnaire items were designed to cap-

ture the students’ and engineer participants’ gender

and age. For students, it also asked their year in

school (e.g., sophomore), major, and experience.

The students were asked if they had participated in

a professional work experience (e.g., co-op, intern-

ship) and if they had technical experience (e.g.,
undergraduate research, working in a machine

shop) [48]. Industry participants were asked their

highest degree (doctorate, masters, bachelors) and

their years of industry experience.

As noted, the AES includes four main constructs

of AE: MSA, GB, EP, and MP. The survey was

designed to assess the participants’ beliefs and

cognition in relation to the constructs of AE. The

reliability of the scale was computed with Cronba-

ch’s alphas. TheCronbach’s alpha of the surveywas
0.795 (N=629), which indicated that the survey was

a reliable instrument. MSA dimension had the

highest reliability coefficient (� = 0.747) while the

GB dimension had the lowest reliability coefficient

(�= 0.507).MP (�= 0.602) and EP (�= 0.614) sub-

dimensions were acceptably reliable.

3.3 Contextual Exercise

At both TAMUandPVAMUstudents were divided

into alternative groups where they were asked to

complete a CADmodeling exercise. The instructors
used a previous graded exercise to ensure that the

skill distribution of the various groups was even.

One group was asked to complete the modeling of a

stylized component that did not have any significant

function. The stylized component either took the

form of a drawing or a 3D printed plastic model of

the component. These were considered the ‘‘con-

trol’’ situation and are analogous to the types of
activities that students learning CAD traditionally

engage in. Examples of the stylized model based on

an exercise from [49] are shown in Fig. 1.

For the contextualized activity, the goal was to

give students a novel activity that they have never

done before. We asked students to bring an item

from home that had similar characteristics as those

of the analogous stylized component (i.e., geo-
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Table 1. Demographic Breakdown of Participants

PVAMU TAMU Practicing
EngineersOverall CAD Overall CAD

Male 183 109 333 163 23

Female 37 20 53 12 0

Average Age (St. Dev) 21.6 (3.4) 20.3 (2.9) 21.4 (3.8) 22.3 (3.9) 45.1 (11.3)

Engineering Experience 20.9% 11.6% 35.8% 44.0% N/A

Technical Experience 25.9% 20.2% 44.8% 54.9% N/A

Fig. 1. Stylized Objects – a. Two-dimensional drawing; b. CAD rendering; c. 3D Printed Model.



metric complexity and composition). An attempt

was made to create a new challenge for students

where they could apply their existing knowledge.

Fig. 2 provides an example of an object selected by a

student and the associated CAD model for the

contextual exercise.

In each case, students were given up to 75minutes

to complete the modeling of their object. This was a
graded exercise, so students had an incentive to

complete the modeling accurately. It should be

noted that not all of the students completed the

modeling exercise for either the contextual or

stylized case. For instance, of the 175 TAMU

students that engaged in the CAD modeling por-

tion, only 116 completed their models.

3.4 Interviews and Code Extraction

We interviewed the participants before and after
their modeling exercises. In the pre-activity inter-

views, we asked participants to discuss their model-

ing strategies along with what they expected from

the exercise. In the post-activity interviews, we

asked the participants to highlight any challenges

they faced and how they attempted to overcome

those challenges. Each interview lasted around 8–12

minutes (total pre and post). The interviews were

audio recorded and transcribed verbatim. The pre

and post interview questions (and associated

follow-up questions) are shown in Table 2.

The transcripts of the interviews were analyzed

using the constant comparativemethod [50, 51]. First

open and axial coding strategies were used to analyze

the interview responses. Next selective coding was
used. The responses were coded along the four

dimensions of adaptive expertise defined by [19]:

multiple perspectives, metacognition, goals and

beliefs, and epistemology. The coding and associated

characteristics and adaptive expertise aspects are

shown in Table 3. Pre- and post-interview instances

for each dimension were tabulated and used to

quantify an overall pre-, post-, and total interview
AE manifestation counts. These AE manifestation

counts were then compared to student AES data.

4. Analyses and Results

4.1 Group Differences – Quantitative Survey Data

The results from the individual constructs of the

AES along with the overall adaptive expertise

scores are shown in Table 4. As mentioned pre-
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Fig. 2. Apple Slicer Modeled by a Student for the Contextual CAD Exercise – a. Physical Object; b. CAD Rendering.

Table 2. Pre- and Post-modeling Activity Questions

Pre-modeling Activity Questions

Question 1 What are the things you consider first when you are asked to model an object?
� Why?

Question 2 What are the challenges you often encounter in the modeling process?
� How do you plan to overcome these challenges?
� Which strategies do you anticipate using?

Question 3 Are you familiar with the object you are going to model today?

Question 4 How important it is to know about the object you are going to model?
� If you are familiar with the object, you are modeling or if you use it often in your daily life, is it easier for you to
model it?

� Why, why not?

Post-modeling Activity Questions

Question 1 The things you considered before you began modeling the object, were they helpful to you in the process?
� How and why?

Question 2 What challenges did you encounter during the modeling process?
� How did you overcome the challenges you faced during the modeling process?

Question 3 Was knowing the object or being familiar with it, helpful to you in your modeling process?
� How and why?

Question 4 How confident are you in your model?



viously, the majority of the students at PVAMU

were freshmen, while the majority of those at
TAMU were juniors. The ANOVA results in

Table 5 show that there were statistically significant

differences between groups for all constructs with

the exception of the metacognition. Results that are

statistically significant at the p < 0.05 are bolded.

The Scheffe Post Hoc results for the differences

between the subgroups are presented in Table 6.
There are statistically significant group differences

for the multiple perspectives and epistemology

constructs, as well as the overall adaptive expertise

that follow the same group differences. In each of

those cases, the differences between the PVAMU
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Table 3. Interview Data Coding and Associated Adaptive Expertise Dimensions

AE Dimensions AE Associated Aspects Codes from Interviews

Multiple Perspectives Efficiency Most efficient way to model
Easiest way to model

Innovation

Flexibility in novel situations Creating drawing of object

Metacognition Confidence

Successfully monitor one’s
own understanding

Have to pay close attention while modeling
Have a good starting point
Having a 3D part in hand helps

Recognize that one’s own knowledge may be
incomplete

How to use the features
Complexity of the object
How to model
Forgot how to use some features

Use different / multiple
methods to solve problem

Creating drawing of object
Look object from different angles
Trying different methods

Goals & Beliefs Seek out opportunities for new learning Try learn better (if you had problems)

Self-regulation strategies Have an approach
Have a way to organize the model
Know what steps to take first
Have a good starting point
Have strategies to model

Epistemology Pursue knowledge Practice
Reading more

Others can provide information Ask someone for help

Table 4. Descriptive Statistics for AES Data by Group

N M SD Min Max

Multiple Perspectives PVAMU 220 3.88 0.58 2.45 5.82

TAMU 386 4.01 0.60 2.27 6.00

Industry 23 4.29 0.47 3.45 5.45

Total 629 3.97 0.60 2.27 6.00

Metacognition PVAMU 220 4.36 0.63 2.67 6.00

TAMU 386 4.40 0.58 1.78 6.00

Industry 23 4.52 0.52 3.44 5.44

Total 629 4.39 0.60 1.78 6.00

Goals and Beliefs PVAMU 220 3.92 0.50 2.46 5.54

TAMU 386 3.84 0.45 2.54 5.77

Industry 23 4.12 0.29 3.62 4.69

Total 629 3.88 0.47 2.46 5.77

Epistemology PVAMU 220 4.13 0.57 2.33 5.56

TAMU 386 4.45 0.51 2.89 5.89

Industry 23 4.47 0.58 2.89 6.00

Total 629 4.34 0.56 2.33 6.00

Total Adaptive Expertise PVAMU 220 16.29 1.64 11.67 20.70

TAMU 386 16.69 1.51 12.09 21.98

Industry 23 17.40 1.29 14.39 19.79

Total 629 16.58 1.57 11.67 21.98

Note: N: Number of participants; M: Mean; SD: Standard deviations.



(more junior) students (J) and the TAMU or

industry (I) participants are negative. There is no

statistically significant difference for metacogni-
tion. In the case of goals and beliefs, the only

statistically significant difference is between the

TAMU and industry participants, which is nega-

tive.

4.2 Group Differences – Interview Data

As above mentioned, we interviewed the partici-

pants before and after the CAD modeling exercises

to determine their modeling procedures and extract
aspects related to adaptive expertise from the tran-

scripts of the interviews. We counted the number of

instances related with the various dimensions of

adaptive expertise and tabulated them. We present

the descriptive statistics for the post interviews and

total instances in Tables 7 and 8, respectively.
The ANOVA results for post-exercise and total

interview data are shown in Tables 9 and 10,

respectively. These data show that there were sta-

tistically significant differences between groups for

all aspects of adaptive expertise aspects mentioned

in the interviews with the exception of epistemol-

ogy. The Scheffe Post Hoc results for the differences

between the subgroups for post-exercise and total
interview data are shown in Tables 11 and 12,

respectively. In the case of multiple perspectives,

the industry participants had significantly more

instances of adaptive expertise aspects in their
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Table 5. ANOVA Results for AES Data by Group

SS df MS F p

Multiple Perspectives Between Groups 4.71 2 2.352 6.726 0.001*

Within Groups 218.96 626 0.350

Total 223.66 628

Metacognition Between Groups 0.54 2 0.269 0.755 0.470

Within Groups 223.29 626 0.357

Total 223.82 628

Goals and Beliefs Between Groups 2.32 2 1.158 5.347 0.005*

Within Groups 135.63 626 0.217

Total 137.94 628

Epistemology Between Groups 14.78 2 7.391 25.902 0.000*

Within Groups 178.62 626 0.285

Total 193.40 628

Total Adaptive Expertise Between Groups 38.57 2 19.285 8.039 0.000*

Within Groups 1501.71 626 2.399

Total 1540.28 628

Note: SS: Sum of Squares. df: Degrees of FreedomMS: Mean Square. F: F distribution.
p: Probability of obtaining an F-ratio.

Table 6. Scheffe Post Hoc Multiple Comparisons for AES Data by Group

Dependent Variable
Mean
Difference (I-J) Std. Error P

Multiple Perspectives PVAMU TAMU –0.127 0.050 0.040

Industry –0.413 0.130 0.007

TAMU Industry –0.286 0.127 0.080

Metacognition PVAMU TAMU –0.033 0.050 0.809

Industry –0.153 0.131 0.504

TAMU Industry –0.120 0.128 0.644

Goals and Beliefs PVAMU TAMU 0.081 0.039 0.121

Industry –0.200 0.102 0.148

TAMU Industry –0.281 0.100 0.020

Epistemology PVAMU TAMU –0.320 0.045 <0.001

Industry –0.345 0.117 0.013

TAMU Industry –0.025 0.115 0.976

Total Adaptive Expertise PVAMU TAMU –0.399 0.131 0.010

Industry –1.111 0.339 0.005

TAMU Industry –0.712 0.332 0.102

Note: Std. Error: Standard Error.



post-exercise interviews than either the PVAMU or

TAMU students. While the post-exercise aspects of

metacognition scaled with experience (fewest for

PVAMU, most of industry), the differences
between groups were not statistically significant.

With respect to goals and beliefs, the only statisti-

cally significant difference was between PVAMU

and TAMU students (who had the highest average

number of instances). For overall post-exercise

adaptive expertise aspects, we again see the most

experienced participants (industry) exhibiting the

greatest number of instances with the least experi-
enced exhibiting the fewest. In both cases, the

differences between the groups are statistically sig-

nificant.

For the case of total adaptive expertise instances,
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Table 7. Post-Exercise Interview Adaptive Expertise Instance Data by Group

N M SD Min Max

Post-exercise Interview
Multiple Perspectives

PVAMU 93 0.54 0.69 0.00 3.00

TAMU 139 0.72 0.82 0.00 4.00

Industry 14 1.43 1.16 0.00 4.00

Total 246 0.69 0.81 0.00 4.00

Post-exercise Interview
Metacognition

PVAMU 93 0.56 0.68 0.00 3.00

TAMU 139 0.81 0.92 0.00 4.00

Industry 14 1.00 0.96 0.00 3.00

Total 246 0.72 0.85 0.00 4.00

Post-exercise Interview
Goals and Beliefs

PVAMU 93 0.43 0.71 0.00 3.00

TAMU 139 0.91 0.95 0.00 5.00

Industry 14 0.57 1.02 0.00 3.00

Total 246 0.71 0.90 0.00 5.00

Post-exercise Interview
Epistemology

PVAMU 93 0.13 0.45 0.00 3.00

TAMU 139 0.10 0.37 0.00 2.00

Industry 14 0.21 0.58 0.00 2.00

Total 246 0.12 0.41 0.00 3.00

Post-exercise Interview
Total Adaptive Expertise

PVAMU 93 1.66 1.36 0.00 6.00

TAMU 139 2.54 1.79 0.00 11.00

Industry 14 3.21 1.97 1.00 9.00

Total 246 2.24 1.71 0.00 11.00

Table 8. Total Interview Adaptive Expertise Instance Data by Group

N M SD Min Max

Post-exercise Interview
Multiple Perspectives

PVAMU 93 1.34 1.29 0.00 5.00

TAMU 139 1.89 1.67 0.00 9.00

Industry 14 1.79 1.12 0.00 4.00

Total 246 1.68 1.53 0.00 9.00

Post-exercise Interview
Metacognition

PVAMU 93 1.48 1.20 0.00 5.00

TAMU 139 1.94 1.48 0.00 7.00

Industry 14 2.79 1.81 0.00 5.00

Total 246 1.82 1.44 0.00 7.00

Post-exercise Interview
Goals and Beliefs

PVAMU 93 1.38 1.73 0.00 7.00

TAMU 139 2.71 2.03 0.00 10.00

Industry 14 1.00 1.47 0.00 5.00

Total 246 2.11 2.01 0.00 10.00

Post-exercise Interview
Epistemology

PVAMU 93 0.72 1.04 0.00 5.00

TAMU 139 0.68 0.88 0.00 4.00

Industry 14 1.14 1.17 0.00 4.00

Total 246 0.72 0.96 0.00 5.00

Post-exercise Interview
Total Adaptive Expertise

PVAMU 93 4.92 2.83 0.00 14.00

TAMU 139 7.23 4.05 0.00 24.00

Industry 14 6.71 2.37 3.00 12.00

Total 246 6.33 3.71 0.00 24.00
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Table 9. ANOVA Results for Post-Exercise Interview Data by Group

SS df MS F p

Post-exercise Interview
Multiple Perspectives

Between Groups 9.916 2 4.958 7.895 <0.001

Within Groups 152.604 243 0.628

Total 162.520 245

Post-exercise Interview
Metacognition

Between Groups 4.523 2 2.262 3.183 0.043

Within Groups 172.680 243 0.711

Total 177.203 245

Post-exercise Interview
Goals and Beliefs

Between Groups 13.320 2 6.660 8.739 <0.001

Within Groups 185.188 243 0.762

Total 198.508 245

Post-exercise Interview
Epistemology

Between Groups 0.183 2 0.091 0.536 0.586

Within Groups 41.399 243 0.170

Total 41.581 245

Post-exercise Interview
Total Adaptive Expertise

Between Groups 57.487 2 28.744 10.585 <0.001

Within Groups 659.879 243 2.716

Total 717.366 245

Table 10. ANOVA Results for Total Exercise Interview Data by Group

SS df MS F p

Post-exercise Interview
Multiple Perspectives

Between Groups 16.902 2 8.451 3.715 0.026

Within Groups 552.728 243 2.275

Total 569.630 245

Post-exercise Interview
Metacognition

Between Groups 25.646 2 12.823 6.503 0.002

Within Groups 479.123 243 1.972

Total 504.768 245

Post-exercise Interview
Goals and Beliefs

Between Groups 117.719 2 58.860 16.472 <0.001

Within Groups 868.317 243 3.573

Total 986.037 245

Post-exercise Interview
Epistemology

Between Groups 2.686 2 1.343 1.467 0.233

Within Groups 222.517 243 0.916

Total 225.203 245

Post-exercise Interview
Total Adaptive Expertise

Between Groups 298.366 2 149.183 11.793 <0.001

Within Groups 3073.963 243 12.650

Total 3372.329 245

Table 11. Scheffe Post Hoc Multiple Comparisons for Post-Exercise Interview Data by Group

Dependent Variable
Mean Difference
(I-J) Std. Error P

Multiple Perspectives PVAMU TAMU –0.182 0.106 0.233

Industry –0.891 0.227 <0.001

TAMU Industry –0.709 0.222 0.007

Metacognition PVAMU TAMU –0.247 0.113 0.094

Industry –0.441 0.242 0.192

TAMU Industry –0.194 0.236 0.714

Goals and Beliefs PVAMU TAMU –0.484 0.117 <0.001

Industry –0.141 0.250 0.853

TAMU Industry 0.342 0.245 0.378

Epistemology PVAMU TAMU 0.028 0.055 0.877

Industry –0.085 0.118 0.772

TAMU Industry –0.114 0.116 0.618

Total Adaptive Expertise PVAMU TAMU –0.884 0.221 <0.001

Industry –1.558 0.472 0.005

TAMU Industry –0.675 0.462 0.346



again the ANOVA results show statistically signifi-

cant difference between groups for all aspects with

the exception of epistemology. For the total aspects

of metacognition mentioned in the interviews, the

PVAMU students’ fewer instances (than TAMU
students) were statistically significant. For overall

interview data, the metacognition responses again

scaled with expertise; however, in this case both

mean differences between groups are statistically

significant. For goals and beliefs, the TAMU stu-

dents had statistically significantly higher instances

of overall adaptive expertise instances in the inter-

views than either the PVAMU students or industry

participants. For the overall instances of adaptive

expertise, the only statistically significant difference

was between PVAMU and TAMU students.

4.2.1 By Activity

As detailed in Section 3.3, students were split into

groups to model either a stylized component (in

drawing or three dimensional form) or participated

in a contextualized activity. The contextualized
activity presented students with a new challenge

to apply their existing modeling knowledge. Parti-

cipating students were interviewed prior to and

after the exercise to assess their adaptive expertise
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Table 12. Scheffe Post Hoc Multiple Comparisons for Total Exercise Interview Data by Group

Dependent Variable
Mean Difference
(I-J) Std. Error P

Multiple Perspectives PVAMU TAMU –0.548 0.202 0.027

Industry –0.442 0.432 0.594

TAMU Industry 0.106 0.423 0.969

Metacognition PVAMU TAMU –0.459 0.188 0.053

Industry –1.302 0.403 0.006

TAMU Industry –0.843 0.394 0.103

Goals and Beliefs PVAMU TAMU –1.336 0.253 <0.001

Industry 0.376 0.542 0.786

TAMU Industry 1.712 0.530 0.006

Epistemology PVAMU TAMU 0.037 0.128 0.959

Industry –0.422 0.274 0.307

TAMU Industry –0.459 0.268 0.233

Total Adaptive Expertise PVAMU TAMU –2.305 0.476 <0.001

Industry –1.790 1.020 0.216

TAMU Industry 0.516 0.997 0.875

Table 13. Post-Exercise Interview Adaptive Expertise Instance Data by Exercise

N M SD Min Max

Post-exercise Interview
Multiple Perspectives

Contextual Model 110 0.63 0.68 0.00 2.00

Stylized Drawing 93 0.56 0.76 0.00 3.00

Stylized Model 29 1.00 1.04 0.00 4.00

Total 232 0.65 0.77 0.00 4.00

Post-exercise Interview
Metacognition

Contextual Model 110 0.77 0.87 0.00 4.00

Stylized Drawing 93 0.65 0.78 0.00 3.00

Stylized Model 29 0.66 0.94 0.00 3.00

Total 232 0.71 0.84 0.00 4.00

Post-exercise Interview
Goals and Beliefs

Contextual Model 110 0.54 0.76 0.00 4.00

Stylized Drawing 93 0.69 0.87 0.00 3.00

Stylized Model 29 1.52 1.02 0.00 5.00

Total 232 0.72 0.89 0.00 5.00

Post-exercise Interview
Epistemology

Contextual Model 110 0.15 0.47 0.00 3.00

Stylized Drawing 93 0.08 0.30 0.00 2.00

Stylized Model 29 0.07 0.37 0.00 2.00

Total 232 0.11 0.40 0.00 3.00

Post-exercise Interview
Total Adaptive Expertise

Contextual Model 110 2.09 1.41 0.00 6.00

Stylized Drawing 93 1.97 1.71 0.00 6.00

Stylized Model 29 3.24 2.17 1.00 11.00

Total 232 2.19 1.68 0.00 11.00



using the process detailed above. The results are
shown in Tables 13 and 14 for the post-exercise and

total adaptive expertise, respectively; they are cate-

gorized by the type of modeling exercise that each

participant engaged in.

The ANOVA results for post-exercise and total

interview data by exercise type are shown in Tables

15 and 16, respectively. These analyses revealed that

there are statistically significant differences between
groups for multiple perspectives, goals and beliefs,

and total adaptive expertise. This was the base for

both the post-exercise and overall interview data.

The Scheffe post hoc comparisons provide addi-

tional insights. The stylized model had the greatest

mean for the multiple perspectives aspect in both
the post interview and total adaptive expertise. The

difference was statistically significant when com-

pared to the stylized drawing in the post-interview

data and statistically significant for both the sty-

lized drawing and the contextual model for the total

interview data. In the case of goals and beliefs, the

stylized model again had the greatest mean and the

difference with the differences with the contextual
model and the stylized drawing were statistically

significant for both the post-interview and total

cases. In the case of total adaptive expertise from

the interviews the stylized model elicited more

instances than either the contextual model or the
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Table 14. Total Interview Adaptive Expertise Instance Data by Exercise

N M SD Min Max

Post-exercise Interview
Multiple Perspectives

Contextual Model 110 1.57 1.31 0.00 5.00

Stylized Drawing 93 1.57 1.71 0.00 9.00

Stylized Model 29 2.38 1.70 0.00 8.00

Total 232 1.67 1.55 0.00 9.00

Post-exercise Interview
Metacognition

Contextual Model 110 1.63 1.20 0.00 6.00

Stylized Drawing 93 1.92 1.56 0.00 7.00

Stylized Model 29 1.72 1.51 0.00 6.00

Total 232 1.76 1.39 0.00 7.00

Post-exercise Interview
Goals and Beliefs

Contextual Model 110 1.89 1.84 0.00 10.00

Stylized Drawing 93 2.04 2.09 0.00 7.00

Stylized Model 29 3.69 1.83 0.00 9.00

Total 232 2.18 2.02 0.00 10.00

Post-exercise Interview
Epistemology

Contextual Model 110 0.72 0.84 0.00 4.00

Stylized Drawing 93 0.67 0.99 0.00 5.00

Stylized Model 29 0.72 1.16 0.00 4.00

Total 232 0.70 0.94 0.00 5.00

Post-exercise Interview
Total Adaptive Expertise

Contextual Model 110 5.81 2.93 0.00 14.00

Stylized Drawing 93 6.20 4.28 0.00 23.00

Stylized Model 29 8.52 4.26 4.00 24.00

Total 232 6.31 3.78 0.00 24.00

Table 15. ANOVA Results for Post-Exercise Interview Data by Exercise

SS df MS F p

Post-exercise Interview
Multiple Perspectives

Between Groups 4.374 2 2.187 3.776 0.024

Within Groups 132.643 229 0.579

Total 137.017 231

Post-exercise Interview
Metacognition

Between Groups 0.909 2 0.454 0.638 0.529

Within Groups 163.160 229 0.712

Total 164.069 231

Post-exercise Interview
Goals and Beliefs

Between Groups 22.236 2 11.118 15.663 <0.001

Within Groups 162.553 229 0.710

Total 184.789 231

Post-exercise Interview
Epistemology

Between Groups 0.378 2 0.189 1.180 0.309

Within Groups 36.708 229 0.160

Total 37.086 231

Post-exercise Interview
Total Adaptive Expertise

Between Groups 37.726 2 18.863 7.020 0.001

Within Groups 615.304 229 2.687

Total 653.030 231
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Table 16. ANOVA Results for Total Exercise Interview Data by Exercise

SS df MS F p

Post-exercise Interview
Multiple Perspectives

Between Groups 16.562 2 8.281 3.534 0.031

Within Groups 536.541 229 2.343

Total 553.103 231

Post-exercise Interview
Metacognition

Between Groups 4.498 2 2.249 1.160 0.315

Within Groups 443.984 229 1.939

Total 448.483 231

Post-exercise Interview
Goals and Beliefs

Between Groups 77.029 2 38.514 10.223 <0.001

Within Groups 862.726 229 3.767

Total 939.754 231

Post-exercise Interview
Epistemology

Between Groups 0.156 2 0.078 0.087 0.917

Within Groups 204.723 229 0.894

Total 204.879 231

Post-exercise Interview
Total Adaptive Expertise

Between Groups 169.921 2 84.960 6.221 0.002

Within Groups 3127.351 229 13.657

Total 3297.272 231

Table 17. Scheffe Post Hoc Multiple Comparisons for Post-Exercise Interview Data by Exercise

Dependent Variable
Mean Difference
(I-J) Std. Error P

Multiple Perspectives Multiple
Contextual Model

Stylized Drawing 0.068 0.107 0.817

Stylized Model –0.373 0.159 0.066

Stylized Drawing Stylized Model –0.441 0.162 0.026

Multiple Metacognition Contextual Model Stylized Drawing 0.128 0.119 0.563

Stylized Model 0.118 0.176 0.801

Stylized Drawing Stylized Model –0.010 0.180 0.998

Multiple Goals and Beliefs Contextual Model Stylized Drawing –0.152 0.119 0.443

Stylized Model –0.981 0.176 <0.001

Stylized Drawing Stylized Model –0.829 0.179 <0.001

Multiple Epistemology Contextual Model Stylized Drawing 0.079 0.056 0.374

Stylized Model 0.086 0.084 0.593

Stylized Drawing Stylized Model 0.006 0.085 0.997

Multiple Total Adaptive
Expertise

Contextual Model Stylized Drawing 0.123 0.231 0.867

Stylized Model –1.150 0.342 0.004

Stylized Drawing Stylized Model –1.274 0.349 0.002

Table 18. Scheffe Post Hoc Multiple Comparisons for Total Exercise Interview Data by Exercise

Dependent Variable
Mean Difference
(I-J)

Std. Error
P

Multiple Perspectives Contextual Model Stylized Drawing 0.003 0.216 1.000

Stylized Model –0.807 0.320 0.043

Stylized Drawing Stylized Model –0.809 0.326 0.047

Metacognition Contextual Model Stylized Drawing –0.297 0.196 0.318

Stylized Model –0.097 0.291 0.946

Stylized Drawing Stylized Model 0.201 0.296 0.795

Goals and Beliefs Contextual Model Stylized Drawing –0.152 0.273 0.857

Stylized Model –1.799 0.405 <0.001

Stylized Drawing Stylized Model –1.647 0.413 <0.001

Epistemology Contextual Model Stylized Drawing 0.052 0.133 0.928

Stylized Model –0.006 0.197 1.000

Stylized Drawing Stylized Model –0.057 0.201 0.960

Total Adaptive Expertise Contextual Model Stylized Drawing –0.395 0.521 0.750

Stylized Model –2.708 0.771 0.002

Stylized Drawing Stylized Model –2.313 0.786 0.014



stylized drawing. These differences were statistically

significant for both the post-interview and total
exercise cases.

4.3 Interview and Survey Relationship

To investigate the relationship between the AES
and the total manifestations of adaptive expertise

behavior from the interviews, Pearson correlation

was used to compare the results. These are shown in

Table 19; the correlation is shown in the top of each

cell with the significance below. While the interview

and AES results are positively correlated for each

aspect of adaptive expertise as well as total adaptive

expertise, only multiple perspectives and total
expertise are statistically significant.

5. Discussion

When examining the adaptive expertise survey

(AES) data, it was expected that practicing engineer
would have higher AE scores than their more junior

student counterparts. This was generally the case.

One-way ANOVA showed that with the exception

of the metacognition aspect, there were statistically

significant differences between groups. The post-

hoc analysis did not show a statistically significant

difference between the more senior students

(TAMU) and the industry professionals for most
aspects. However, there was a statistically signifi-

cant difference for goals and beliefs. Significant

industry practices (note the average age of the

practicing engineers was over 45) may change

ones views regarding opportunities for growth

and the view of uncertainty. In other cases the

differences were significant between the more
junior students (mostly freshmen from PVAMU)

and the TAMU students and industry profes-

sionals. This is in agreement with previous work

showing the impact of education on adaptive exper-

tise [26, 32].

One-way ANOVA were used to see if the groups

were different from each other in terms of the AE

manifestation during the interviews. For the differ-
ences between students who used different objects

to model (3D stylized object, 2D stylized drawing,

and 3D contextual object), it was expected that

when students were given a novel challenge that

they had not completed previously, they would

respond to interview questions differently by

means of the AE manifestation. Results indicated

that in general, students who used a 3D printed
stylized object to create a model in CAD had more

AE manifestations than other groups.

Indeed, through the pre interview, exceptionally,

students with 2D stylized drawing had more ‘‘meta-

cognitive self-assessment’’ manifestations than stu-

dents with a contextual 3D object. Here, it can be

inferred that 3D objects were more challenging for

students because they regularly worked with 2D
drawings in the class. The 3D objects required them

to takemeasurements and determine which features

(modeling tools) could be used to create which

geometric aspects. Although effortful problem sol-

ving in unfamiliar new situations requires metacog-

nitive skills [2], in this study we observed that

students who used 2D drawings expressed more of
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Table 19. Adaptive Expertise Survey and Total Exercise Interview Data Correlation

2 3 4 5 6 7 8 9 10

1. Total Interview Multiple
Perspectives

0.251 0.328 0.045 0.697 0.151 0.083 0.071 0.071 0.134

<0.001 <0.001 0.481 <0.001 0.018 0.196 0.267 0.269 0.036

2. Total Interview
Metacognition

0.130 0.150 0.599 0.087 0.051 –0.017 0.129 0.092

0.041 0.019 <0.001 0.176 0.425 0.787 0.044 0.149

3. Total InterviewGoals and
Beliefs

0.009 0.728 -0.014 0.035 0.101 0.079 0.067

0.882 <0.001 0.829 0.581 0.115 0.217 0.294

4. Total Interview
Epistemology

0.340 0.091 0.027 0.09 0.036 0.084

<0.001 0.155 0.67 0.162 0.572 0.189

5. Total Interview Total
Adaptive Expertise

0.112 0.08 0.1 0.131 0.149

0.081 0.212 0.118 0.04 0.019

6. AES Multiple
Perspectives

0.398 0.341 0.324 0.750

<0.001 <0.001 <0.001 <0.001

7. AES Metacognition 0.356 0.336 0.758

<0.001 <0.001 <0.001

8. AES Goals and Beliefs 0.197 0.635

<0.001 <0.001

9. AES Epistemology 0.664

<0.001

10. AES Total Adaptive
Expertise



their metacognitive self-assessment skills comforta-

bly before they started drawing. On the other hand,

for the post interview; 3D stylized object students

had more ‘‘multiple perspectives’’, ‘‘goals and

beliefs’’ and more overall manifestation of AE

behavior than students with 2D drawings. For the
post interview, students were interviewed after their

exercise and it can be interpreted that because 3D

drawings were more challenging for students, they

might have commented more on their performance

and might have expressed more AEmanifestations.

In general, and unexpectedly, for both pre and post

interviews, results indicated that students with 3D

stylized objects had more overall manifestations of
AE behavior than students with a 3D contextual

object to model in CAD.

For the students, using a familiar object was a

novel, more challenging situation. It was proposed

that a novel problem would make students express

more AEmanifestation during the interviews; how-

ever, it did not. The reason why students working

with familiar objects revealed less AEmanifestation
may be the students underestimated the complexity

of modeling a familiar object and they might have

believed that this process would be easier than they

expected. They might have realized that their mod-

eling plans did not work out like they assumed.

Thus, during the interview, they did express less AE

manifestations.

In addition, an assessment of any differences
among students of different rank was undertaken.

For both pre and post interviews, seniors have

more ‘‘goals and beliefs’’ and more overall man-

ifestation of adaptive expertise than freshmen.

When the two campuses are compared, at

TAMU where most students were seniors while

at PVAMU, the students were mostly freshmen

and sophomores; for all the observed statistically
significant differences, students in TAMU

reported higher AE scores than the students in

PVAMU. As expected, students were more experi-

enced with the modeling practice and their AE

characteristics were enhanced. As noted above,

this is an expected result, Fisher and Peterson

[19] also found a similar patterns in their study.

According to their findings, levels of adaptive
expertise from freshmen to seniors to faculty

increased monotonically. In addition, the average

adaptive expertise score of engineering faculty was

higher than that of the engineering freshmen. In

another related work that used a design scenario

to assess how undergraduates approach novel

design challenges, Walker, et al. [26] concluded

that fourth-year students created more efficient
and innovative solutions than did first-year stu-

dents. Fourth-year students were also more con-

fident in their problem-solving abilities. Over time

all students became more innovative and more

confident as was observed in this study as well.

As expected, much of the increase in innovation

for beginning students emerged related to their

experience and greater understanding of context.

It was expected that participants’ AES scores
would match with their reported AE characteristics

in the interviews. The overall scores in AES and

interviews are significantly correlated. When over-

all pre and post interviews total responses are

compared with the AES scores, results indicate

that students’ manifestations during interviews are

correlated with sub-dimension scores of AES. The

multiple perspectives manifestation and the corre-
sponding AES aspect have statistically significant

correlations. The overall manifestations of adaptive

expertise are significantly correlated with overall

total AES scores.

Themultiple perspectives characteristic is defined

as openness to new information and novel ways to

solve problems by recognizing opportunities for

creativity [19]. More importantly, the students’
overall sub-dimension of AES scores and overall

manifestation of AE behavior in interviews are

significantly correlated as expected. It can be con-

cluded that, participants AES responses were con-

sistent with their interview responses. These results

provide insights to research conducted to enhance

CAD instruction. These findings show thatmultiple

perspectives, goals and beliefs, and metacognitive
skills are good indicators of developing adaptive

expertise and that educators should consider pro-

moting those skills in CAD education.

According toKalyuga [2] instructing for adaptive

and flexible expertise requires developing advanced

forms of skills that are applicable to a greater

variety of situations. Integrating novel and challen-

ging problems to classroom exercises will encourage
students be more flexible, and adaptive. In a study

on assessing AE, Pandy, et al. [38] find that chal-

lenge-based instruction can accelerate the trajectory

of novice to expert development. With non-routine

and creative exercises in classroom, essential attri-

butes of adaptive expertise can be developed [2].

New challenges provide learners with additional

contexts and develop their innovation skills which
are necessary to manage the novel problems they

will face after graduation, and potentially identify

opportunities for new discovers [1]. In another

study on the development of AE, Martin, et al.

[52] claim that educators can and do help students

develop adaptive expertise, even when students do

not necessarily show such qualities initially. This

can be achieved by using well-informed teaching
methods that require students to engage in complex

problem solving. Learning experiences that reflect

both knowledge and novelty can increase the
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chances that people will develop adaptive expertise

in their fields of interest [52].

6. Conclusion

The main purpose of this study was to investigate

the role of various factors on the manifestation of

AE through contextual CAD exercises. Findings
confirmed the importance of practice for develop-

ing AE through engineering education by enhan-

cing regular CAD exercises in the classroom. In

fact, the results indicated that contextual CAD

modeling exercises have an effect on AE manifesta-

tions during CAD exercises. The results will possi-

bly bring insights for engineering educators to

improve CAD instruction within undergraduate
engineering education. As it is reported in the

results, multiple perspectives, goals and beliefs,

and metacognitive skills are significant indicators

of developing AE in engineering education. Hence,

it can be inferred that engineering educators should

consider promoting those skills in their courses

including CAD applications. For the future studies

following this study, it is significant to explore and
scrutinize the role of contextual exercise on stu-

dents’ manifestations of AE during CAD practices.

When we investigate the relationship between the

AES and the total manifestations of AE behavior

from the interviews; as expected the interview and

AES results are positively correlated for each aspect

of adaptive expertise as well as total adaptive

expertise. In fact, this result in itself explains how
important the use of contextual exercise in CAD

practices.

To conclude; our study offers significant insights

for engineering education and educational sciences

researchers by means of improving engineering

curriculum to developAE in engineering education.

The results confirm that contextual exercise in CAD

practices can help advance students’ goals & beliefs,
multiple perspectives, metacognitive self-assess-

ment and epistemology characteristics that are

indicators of developing AE.

These outcomes also confirm the importance of

practice to improve AE through engineering educa-

tion by enriching regular CAD exercises in the

classroom. With non-routine and creative exercises

in CAD practice in engineering education, essential

attributes of AE can be settled. Integrating original,

challenging and contextual problems to engineering

education exercises will encourage students bemore

flexible, and adaptive. Moreover, undergraduate

engineering education should promote learning
with problem based or related novel approaches

that emphasizes students’ efforts to solve complex

daily life problems.

This study contributes to the literature as follows:

(1) the results point to the importance of exploring

the role of contextual exercise on students’ expres-

sions of AE manifestations; (2) it was observed that

substituting a routine exercise with a challenging
one can elicit a difference in students’ AE behaviors;

(3) the results provide evidence that AE is developed

through the years and increases with experience.

This study has some limitations. AE in engineer-

ing education is a relatively recent topic in the

literature. Therefore, more longitudinal work is

required to be able to make definite claims about

development of AE in engineering education. In
addition, future research can explore what other

possible exercises and practices contribute develop-

ment of AE. Open questions still endure about how

to gather the dimensions contributing development

of AE when providing instruction to engineering

students. Additionally, more in-depth and long-

term studies specifying the nature of adaptive

expertise should be conducted because on average,
it takes approximately ten years of deliberate prac-

tice, along with the accumulation of experience to

develop recognized levels of expertise. If this time

frame is taken into consideration in the develop-

ment of AE, this study and most studies in the

literature focus mostly on relatively brief snap shots

in time to observe development of AE. Therefore, in

the future, the literature would benefit from studies
that examine AE from amore longitudinal perspec-

tive with same participants. Examining AE over a

more extended period of time could yield valuable

insights.
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