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Previous studies show that contextualized measures of high school achievement – in other words, how well students

performed relative to their high school peers – can help identify students who have the potential to succeed in college, and

thus can serve as a key measure in holistic admissions. Building upon previous work, this study further examines whether

contextualized measures of high school achievement may help identify students who have the potential to succeed in

engineering programs, especially among traditionally underrepresented students in engineering (defined in our paper as

low-SES students, underrepresented students of color, andwomen). Based on longitudinal data from aMidwestern state’s

Department of Education database, this study finds that contextualized measures of high school performance are

significantly associated with students’ college performance – for all students in engineering, as well as across our three

subsamples of traditionally underrepresented students. These findings have important implications for incorporating

contextualized measures of high school performance when making undergraduate admissions decisions in engineering

programs, to help better identify applicants from traditionally underrepresented student populations in engineering. This

is particularly crucial as admissions offices move toward more holistic and test-optional practices.
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1. Introduction

STEM education at the K-12 level is not equally

accessible to all students, due to a wide range of

structural inequities in the U.S. education system.

With school funding determined by local property

taxes, lower-SES and underrepresented students of
color tend to be concentrated in schools with low

levels of financial and pedagogical resources [1].

Students in these schools therefore experience mul-

tiple disadvantages, including lack of access to

advanced STEM coursework, larger class sizes,

and dearth of tailored support from teachers [2–

4]. Given this context, evaluating students in college

admissions solely using their raw measures of high
school achievement (such as raw SAT scores, raw

high school GPA, or how many advanced STEM

courses students took at their high school) may

exacerbate existing inequities, without considering

the educational opportunities that were available to

them.

In light of these problems, institutions are seek-

ing ways to increase equity and diversity in college
admissions: Holistic review aims to level the playing

field among students who had access to different

levels of educational opportunities and resources,

by evaluating an applicant’s achievement within the

context of the opportunities that had been available

to them within their own high school, family, and

neighborhood context. The literature shows that

admissions officers who evaluate students based on
contextualized measures of high school perfor-

mance (for example, evaluating an applicant’s

high school grades and standardized test scores in

relation to peers at the applicant’s own high school)

are more likely to admit low-SES students com-

pared to admission officers who rely solely on raw

criteria to make admission decisions [5–7].

Many students who do not have the highest raw
credentials in the applicant pool may still have the

potential to succeed and thrive in college engineer-

ing programs. Research drawing upon a state-wide

sample of students in public four-year institutions

found that contextualized measures of high school

performance were strongly associated with various

college success indicators such as first-year college

GPA, first-year retention, and college graduation
within four years [8]. These trends were also con-
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firmed, in sub-sample analyses drawing upon the

same state-wide sample, for women, underrepre-

sented students of color, and low-income students

[9]. That said, the lack of empirical evidence on

whether contextualized measures of high school

performance are related to college success in the
engineering context may still cause admissions

officers and engineering faculty to be reluctant to

admit students who do not display the highest raw

high school performance within their applicant

pool.

Our study therefore examines whether students

who have outperformed their peers within their

own high school have the potential to thrive in
college engineering programs. The aim of our

paper is not to compare raw and contextualized

measures of high school performance, and identify

which displays a stronger relationship with college

success; Rather, we aim to examine the extent to

which contextualized measures – which incorporate

important information that raw measures do not –

are associated with college success, and can there-
fore serve as legitimate criteria in holistic engineer-

ing admissions practices that helps expand

educational opportunities to student populations

who are traditionally underrepresented in engineer-

ing programs. Examining these questions is parti-

cularly timely, given the literature presents ample

evidence on efforts that can be done at the K-12

level to make engineering more equitable and
diverse [10, 11], but provides comparatively little

insight into factors admissions officers can and

should take into account to achieve this aim [12, 13].

Our study therefore delves into the following

research questions: (1) Are contextualizedmeasures

of high school performance (i.e. high school GPA,

standardized test scores, curriculum rigor in math

and science subjects) used in holistic review asso-
ciated with successful college outcomes in engineer-

ing? (2) Are the aforementioned contextualized

measures of high school performance associated

with successful college outcomes for underrepre-

sented student populations (i.e. low-income,

women, minoritized students of color) in engineer-

ing programs?

2. Literature Review

2.1 K-12 Disparities and Enrollment Gaps in

STEM Admissions

Gaps in enrollment are pronounced among under-

represented students of color and low-income stu-
dents majoring in STEM. In part, these enrollment

gaps can be attributed to disparities in K-12 oppor-

tunities among students of different race/ethnicities

and socioeconomic status, especially at more selec-

tive universities [14, 15]. As high school GPA and

test scores have historically weighed significantly in

college admissions processes, the literature shows a

link between SES, GPA, and test scores, further

setting back disadvantaged students [16]. Studies

show that students from the highest income quar-

tiles enrolled in undergraduate engineering pro-
grams at higher rates than their lower-income

peers [17–19]. Further, engineering students tend

to come from more privileged high schools, further

demonstrating disparities in enrollment for stu-

dents of lower socioeconomic backgrounds [18,

20, 21].

First-generation college students – who are most

often low-SES and/or underrepresented students of
color as well – face multiple barriers to enrolling in

engineering programs. Among these barriers

include having limited access to high school creden-

tials shown to be valued by admissions officers, as

well as limited access to timely, tailored support on

how to navigate the admissions process, and also

differences in parental ability to help cover costs of

tuition [22–24]. Considering the heterogeneity of
educational resources and academic rigor across

the high schools and the various backgrounds

students are coming from, evaluating students’

raw performance will disregard the educational

resources that were available to them, the barriers

they faced, the challenges that they overcame, and

would therefore lower the changes of these students

going onto engineering programs and exacerbate
the existing structural inequalities.

2.2 The STEM Admissions Landscape

2.2.1 Underrepresented Students of Color and

Low-Income Students

Underrepresented students of color and low-SES

students still remain a minority in engineering

majors at the undergraduate level. To examine the

extent of this phenomenon, it is useful to examine

the proportion of students obtaining engineering

degrees by race/ethnicity and class (as opposed to

acceptance rates, as a large proportion of students

in the U.S. do not choose their majors until several
years after starting college). According to the most

recent available statistics provided by the American

Society for Engineering Education, underrepre-

sented minorities (defined as Black, Latinx, Amer-

ican Indians, and Alaska Natives) comprise only

16.5% of total engineering bachelor’s degrees

awarded between the 2020–2021 academic year

[25]. As for low-income students, data for the
class of 2014 showed that only 9% of students

who attended low-income schools (public, non-

charter) earned a STEM degree within six years of

graduating high school [26]. In comparison, 18% of

students from higher-income schools earned a
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STEM degree. Of the 9% of students from low-

income schools who earned a STEM degree, only

13% of them earned an engineering degree – com-

pared to the 19% of their higher-income peers who

also earned an engineering degree.

These numbers should be evaluated in light of the
various barriers that complicate applying to and

studying in a STEM major. Research shows that

admissions officers at a selective institution showed

the tendency to prioritize high levels of raw math

and science achievement when evaluating engineer-

ing applicants [27]. Moreover, undergraduate engi-

neering programs often have lengthy and strict

course requirements, which disadvantage students
who do not display adequate STEM-related creden-

tials at the high school level [13, 28]. These structural

arrangements likely work against low-income,

underrepresented students of color, in light of the

disparity of STEM-related opportunities offered

among various high schools around the country.

For required classes such as physics and calculus,

lacking the educational background or high school
credentials for admission to four-year engineering

programs can set students back in the admission

process, requiring them to first enter community

college instead – in turn, this can extend the cost and

time of obtaining their engineering degree [13].

Most likely, these students beginning in community

college are significantly less likely to earn a bache-

lor’s degree in engineering than if they had begun at
a four-year college [29, 30]. Although community

colleges are instrumental in enrolling students from

underrepresented backgrounds, students may still

be disadvantaged in applying for four-year engi-

neering programs, further exacerbating issues of

underrepresented students of color and low-

income students being ill-prepared for engineering

programs.
A correlational study based on admissions offi-

cers evaluating engineering applicants to Brown

University examined what admissions officers

prioritize when making admissions decisions in

engineering, and found a tendency to favor high

levels of math and science achievement as well as

high school GPA. These factors significantly chan-

ged admissions outcomes on the part of students,
but were found to be correlated with socioeconomic

status–thus working as barriers to disadvantaged

student populations [27]. Based on its analysis, the

study recommends against evaluating applicants

based on only one criterion such as SAT scores or

GPA [27].

2.2.2 Women

The number of women awarded undergraduate

engineering degrees has more than doubled over

the past decade, from 11,340 in 1998 to 27,600 in

2018; and yet, these figures only comprise 24% of all

engineering bachelor’s degrees awarded in the

2020–2021 academic year, leaving women still

vastly underrepresented among engineering

majors [25]. To better understand the meaning

behind these figures, they should be examined in
light of the high school to college engineering pipe-

line. A potential explanation for the comparative

underrepresentation of women in the field of engi-

neering is the gender gap in standardized tests:

College Board data shows that men consistently

have higher SAT math scores from 1972 to 2016

[31], while women have on average scored higher

than men on Evidence-Based Reading and Writing
[32]. ACT data shows similar results, with men

having higher math scores. Interestingly, however,

there are no such gender gaps in high school grades

and course-taking rigor regarding STEM subjects:

Research shows that gender differences in

advanced-level math and science course-taking

have more or less ceased to exist since the mid-to-

late 1990s [1, 33]. Studies also find that girls
typically have higher grades than their male peers

across all their high school subjects, including math

and science [34]. Jacob [35] attributes this phenom-

enon to the fact that high school GPA and stan-

dardized test scores are measuring different

components of academic achievement. It is possible

that institutions are placing more importance on

metrics (i.e. standardized test scores) that happen to
favor male applicants, thus disadvantaging women

applicants with higher grades [36].

2.3 Institutional Efforts to Address STEM and

Engineering Enrollment Gaps

Institutions have adopted a multitude of strategies

to help combat enrollment gaps of underrepre-
sented students in STEM programs, ranging from

a focus on racially inclusive STEM marketing

materials to retention and STEM enrichment pro-

grams [37]. Other research that focuses on engineer-

ing education offers recommendations for

institutional interventions such as mentoring at

the transition stages between high school and

college levels, greater outreach to all stakeholders
(i.e., high schoolers, community college students,

teachers, and counselors) to help students take

engineering degree preparatory courses, and

improving parental education on what applying

for and obtaining an engineering degree would

entail [1]. Further, institutions can better inform

students about the operations of colleges, engage in

their interests, and offer greater moral support for
underrepresented students of color interested in

engineering [13].

However, most of these strategies only focus on

recruitment, and do not address STEM admissions

Michael N. Bastedo et al.1270



practices per se. Some studies argue that using

additional admission criteria that advantages

underrepresented student populations instead of

solely relying on traditional criteria commonly

used in engineering admissions may help narrow

enrollment gaps. For example, one Midwestern
university addressed engineering enrollment gaps

by strategically identifying affective factors that

benefited women in admissions [36]. These affective

factors included motivation, propensity, and lea-

dership among women; in comparison, traditional

criteria commonly used in engineering admissions

such as math and science coursework and standar-

dized test scores favored men, even when women
had higher high school metrics overall. These

results were presented to major stakeholders in

engineering admissions at the university, including

recommendations for an increased emphasis on

affective factors along with a de-emphasis on stan-

dardized math test scores, which resulted in a 5%

increase in women enrolled from the previous year,

and an additional percentage increase in women
enrolled during the subsequent year.

Further institutional efforts to increase equity

and diversity of student admits in STEM involve

incorporating student context when evaluating stu-

dent merit. Pontificia Universidad Católica de

Chile, for example, created an alternative admis-

sions program for engineering in 2011, which

sought out high school students from disadvan-
taged socioeconomic backgrounds who they deter-

mined would not be admitted under traditional

admissions standards [7]. These students demon-

strated the potential for success through personal

attributes such as leadership and resilience, instead

of solely based on their standardized test scores. In

addition, these students came from municipal or

private subsidized schools, which contrasted to the
types of students generally admitted through tradi-

tional admissions. In the previous admissions year,

more than 80% of incoming freshmen came from

private, fee-paying high schools that generally

enrolled students with the highest standardized

test scores, showing the impetus for the creation

of this program. Multiple cohorts of students

enrolled in the program demonstrated successful
academic performance after their first year of

college.

Similarly, recognizing that students from educa-

tionally disadvantaged backgrounds have fewer

opportunities to develop skills measured by tradi-

tional admission criteria such as standardized tests

and grades, the National Action Council for Mino-

rities in Engineering (NACME) developed the
Vanguard program [38]. The program evaluates

students’ creativity, problem-solving and critical

thinking skills through in-depth individual inter-

views and an interactive performance-based assess-

ment process where students were taught new

concepts and worked in collaborative teams to

solve complex problems. Students admitted

through the Vanguard program, who might other-

wise not have been able to gain admission to
participating universities, went on to show high

persistence and graduation rates.

Prior research examines the role of contextua-

lized measures in engineering admissions and their

effects on the enrollment of low-SES applicants. In

one experiment, admissions officers who were pro-

vided with robust contextual data on applicants

were 25% more likely to admit a low-SES applicant
to engineering who had maximized their high

school opportunities [5]. Admissions officers who

espoused a whole context view of holistic admis-

sions were even more likely to admit the low-SES

engineering applicant [6]. With respect to college

success, prior research based on a multi-institution

state-wide sample of college students suggests that

contextualized measures of high school perfor-
mance are strongly related to college GPA, reten-

tion, and graduation [8], and these effects also hold

for women, low-income, and underrepresented stu-

dents of color [9].

Our paper seeks to add to the existing literature

by further examining whether contextualized mea-

sures also predict college success in engineering.

More specifically, we examine whether contextua-
lized measures of high school performance –

namely, how well students performed in relation

to their high school peers–may help identify stu-

dents with the potential to succeed in college

engineering majors.

3. Data & Methods

To answer these questions, we constructed a dataset

drawing upon a medium-sized Midwestern state’s

Department of Education database (DOE). This

data – containing expansive information from the

high school to college level – was particularly well-

suited to answer our research questions, for several

reasons. The state’s database included information
on high school transcripts for all students who

graduated from public high schools from 2010 to

2015 – which translates into more than 27 million

observations for over 2.3 million high school stu-

dents in the state. This allowed us to observe

courses taken by individual students throughout

their high school career, the grades and credits they

received, and student demographics.
We cleaned information on high school course-

taking within each student’s transcript following an

intensive protocol. This was a key process as we

found considerable variability in high school
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courses across transcripts from different high

school institutions, as well as those from across

different years. We dropped 32% of schools in our

original dataset (which accounts for 20% of high

school graduates), as these schools did not supply

adequate data that fulfilled the standards in our
protocol; follow-up analysis shows that the major-

ity of these dropped schools were failed charter

schools or alternative high schools. Due to this

strict cleaning process, we remain confident that

the data used in our study is comparable across

different high schools, as well as across different

years within the same high school.

The state’s database also included extensive
information on high school students’ performance

on the ACT during the 2010–2015 time period, as

the state mandated the ACT for all high school

juniors during this time. These two aspects of the

data enabled us to construct contextualized mea-

sures of high school performance that have not been

possible with any other large-scale dataset. Finally,

the state’s DOE database also provides transcript
data from all in-state public universities, each of

which has at least one ABET-accredited engineer-

ing program. This allowed us to match students’

high school and college transcripts. The public

four-year institutions included in our sample vary

in selectivity and size, including selective state flag-

ship and research-intensive institutions; the major-

ity of institutions in our sample are broad-access
institutions.

3.1 Sample

Students who satisfied the following conditions

were included in our final dataset. First, the student

needed to have their first three years of high school

transcript data present in the DOE database. This
was crucial information for the purposes of our

study, as it was used to calculate raw and contex-

tualized measures of high school performance.

Second, the student needed to have gone to a

public university within their home state. Finally,

the student needed to have majored in engineering

during their undergraduate career. This resulted in

the matching of high school and college transcript
data for 77,804 students, which accounts for 75% of

in-state college freshmen. Included in the 25%

missing rate are students who either went to private

high schools or attended a high school that we

removed from the sample (i.e., including alternative

schools, schools that closed during the collection

period, and schools with one or more years of

missing data), which amounts to 10% of all high
school graduates [39]. Our concurrent analysis

comparing sample students and the true in-state

freshman at each of our postsecondary institutions

showed that the missing data does not noticeably

affect the overall demographic makeup of the

sample. Therefore, we believe our analytic sample

is representative of the whole in-state student popu-

lation at each of our target institutions.

3.2 Variables

Among many factors admissions officers consider

when making admissions decisions is whether an

applicant has adequate potential to succeed in

college [40]. While student success in the field of

engineering can be defined in many different ways,

common conceptualizations in the literature

include engineering students’ college GPA, first-
year retention, and graduation [41–43]; moreover,

these success indicators are interdependent. Stu-

dents with low GPAs – particularly during their

first year of college–were found to be more likely to

drop out of engineering majors in subsequent years

[41, 43]. Studies posit this may be because engineer-

ing students who receive low collegeGPAs have low

levels of self-efficacy, which in turn leads to lower
retention rates: most students who had lowGPAs in

their first three semesters left engineering – whether

voluntarily, or involuntarily pushed out of the

major based on academic probation requirements

[43]. Lower probabilities of retention and gradua-

tion have therefore been identified as a significant

problem in four-year college engineering programs,

which would also have negative impacts on stu-
dents’ subsequent labor market outcomes [42]. We

therefore use first-year college GPA, first-year

retention within engineering major, and graduation

with an engineering degree within four years as our

dependent variables. First-year GPA was operatio-

nalized as a student’s GPA up until their second fall

term. First-year retention within engineering major

was constructed as a binary variable showing
whether an engineering student remained in the

engineering major for the fall term of their second

year, and graduation with an engineering degree

within four years was a binary variable showing

whether a student received an engineering degree by

the end of their fourth year.

We further constructed various measures of raw

and contextualized high school performance to use
as our independent variables of interest. Raw high

schoolGPA, for example, is theGPA for a student’s

first three years of coursework in high school, which

is the timepoint at which admissions officers would

see records on applicants’ academic achieve-

ment. Our operationalization of this variable did

not weight grades for more advanced coursework

such as honors and AP courses, and we rounded all
grades to the closest letter grade. The main reason

we choose this approach is because high schools

may have different grading practices, and this

provides the most common denominator among
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institutions. For instance, some institutions in our

sample do not use gradations in their admission

processes (e.g., a B+ is a 3.0, not a 3.3). We also ran

additional specifications with gradations for one

institution, which yielded nearly identical results

compared to the approach of using a roundedGPA.
We then created a contextualized high school GPA

variable, by subtracting the median score at a

student’s high school from the raw score, and then

dividing by the standard deviation of the score at

that school. The resulting contextualized high

school GPA variable thus shows how far a student

lies from the median student at their own institu-

tion. We applied a similar process to create raw and
contextualized ACT composite score variables.

We also included independent variables that

would allow us to examine the rigor of English,

math, and science courses taken by a student during

their high school career. We constructed three

separate ordinal scales for English, math, and

science curriculum level respectively. For every

additional course per year that a student had
taken in one of these subjects, we added one point

to the corresponding subject scale; a further addi-

tional point was added for potential AP enrollment,

with students able to obtain up to five potential

points in total for each of the three subjects. After

creating these raw measures of English, math, and

science high school curriculum rigor, we proceeded

to also create contextualized forms of these vari-
ables. For instance, the contextualized score for

math curriculum rigor was created by taking a

student’s highest value for math course level, divid-

ing this by the highest value of math course level

offered by the student’s high school, and then

standardizing this value. Contextualized high

school curriculum rigor variables therefore repre-

sent how much (in standard deviations) a student
progressed through the English, math, and science

courses offered by their school.

3.3 Analytic strategy

We ran a series of OLS regression models for our

continuous dependent variables (i.e. college GPA),

and logistic regressionmodels for our binary depen-
dent variables (i.e. first-year retention within engi-

neering major, graduation with an engineering

degree within four years). In terms of student-level

characteristics, we controlled for student gender,

race/ethnicity, and an indicator for low-income

status (a binary indicator of whether a student is a

Pell recipient). Pell recipient status is a frequently

utilized proxy for income in U.S.-based studies: the
Pell grant is a need-based federal financial aid

awarded by the U.S. Department of Education to

help eligible low-income students pay for the cost of

attending college. We also controlled for expendi-

tures per full-time enrolled (FTE) student in terms

of district-level characteristics; as well as school

urbanicity, percentage of underrepresented stu-

dents of color, and percentage of students who

received free and reduced-price lunch at the

school level. To this model specification, we also
incorporated fixed effects for institution, college

cohort, and institution-by-cohort fixed effects, to

prevent unobserved variation at these levels from

biasingmodel estimates [44]. Then we produced our

sample of interest, which are engineering students,

measured as students who started an engineering

major (based on CIP code) in their first fall term at

the first higher education institution where they
enrolled. Finally, we split our engineering sample

into populations of interest (Pell recipients, women,

and underrepresented students of color (i.e. Black,

Latinx, Hawaiian/Pacific Islander)), to examine

how the relationship between contextualized high

school performance and college success might differ

for different populations within engineering stu-

dents. The notation for our OLS regression
models is as follows:

DV = �0 + �1IV + �2D + �3S + FEi + "

where DV stands for continuous dependent vari-

ables of interest, IV stands for independent vari-

ables of interest, D is a vector of demographic

covariates, S is a vector of high school covariates,
FE stands for a set of fixed effects, and " is the error
term. Based on the results obtained from this model

specification, we also calculated partial eta squared

tomore easily interpret the strength of relationships

between independent and dependent variables in

each model, as well as ensure comparability across

different models. Partial eta squared reflects the

amount of residualized variation in the dependent
variable that a single variable of interest can explain

in the model.

The notation for our logistic regression models is

as follows:

DV = log( �
1��) = �0 + �1IV + �2D + �3S + FEi

where DV stands for dichotomous dependent vari-
ables of interest, IV stands for independent vari-

ables of interest, D is a vector of demographic

covariates, S is a vector of high school covariates,

FE stands for a set of fixed effects, and " is the error
term. Because logistic regression models, unlike

OLS regression models, do not allow us to calculate

partial eta squared effect sizes, we instead ran

separate linear regression models with respective
dichotomous dependent variables for the sole pur-

pose of calculating partial eta squared for effect

size. Because the public four-year institutions in our

sample range from selective state flagship to

broader-access institutions, for each model, we
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ran an overall regression for all institutions as well

as separate regressions for each individual institu-

tion. This allows us to examine the robustness of the

relationships between raw and contextualized high

school performance and college success across

different institutions.

3.4 Limitations

We added a set of fixed effects to our regression

models to account for unobserved confounders at

the cohort, institution, and institution-by-cohort

level, thus helping improve the accuracy of our

estimates of the relationship between high school
performance and college outcomes. Even so, our

study findings should still be interpreted as correla-

tional, not causal.Our study therefore should not be

interpreted as evidence that our independent vari-

ables directly lead to various indicators of college

success, but rather that they tend to be – in varying

degrees – associated with indicators of college suc-

cess. Another problem with drawing causal infer-
ence concerns potential selection bias due to the fact

that our sample conditions on students who have

‘‘succeeded’’ by enrolling in in-state public institu-

tions. In addition, students coming from wealthier

family backgrounds may have more flexibility to

select out-of-state institutions compared to low-

income students. Consequently, our sample may

exhibit a higher proportion of low socioeconomic
status (SES) students than what truly represents the

overall population. However, addressing this issue

can be challenging considering the data that are

made available to us. To date, however, there has

yet to be a similar large-scale empirical study –

whether causal or not – examining the relationship

between contextualized high school performance

and college success. We therefore believe our study
findings supply important evidence to throw light

upon this subject.

We also recognize that there is room for further

exploration regarding how to operationalize con-

textualized measures of high school performance,

as well as indicators of college success. This study is

the result of having consideredmany potential ways

to operationalize these constructs, based on the
data we had. However, there are many other ways

to measure contextualized high school performance

[45, 46] as well as college success [47]; these varying

operationalizations may possibly yield different

results. We therefore strongly encourage future

literature to explore relationships between indica-

tors of high school performance and college success,

using various other operationalizations of these
constructs.

Another limitation pertains to our operationali-

zation of graduation as a college success indicator.

We chose to operationalize this variable as ‘‘gra-

duation from college within four years,’’ as this

would allow us to include more college cohorts in

our sample to examine students’ graduation out-

comes, based on the data that are available to us.

However, many engineering students may need

more than four years to graduate. Indeed, our
descriptive findings show that four-year graduation

rates are relatively lower for engineering students

than those from other departments. Whether a

student graduates within four years may therefore

not be the best indicator of college completion for

engineering students, and may bias our estimates of

the relationship between students’ high school

performance and college success. We thus also ran
supplemental analysis for cohort 2014–15, for

whom we could observe whether students had

graduated within five years. The aggregated esti-

mates for all 15 institutions and sub-analyses for

three institutions with sufficient cell sizes (institu-

tions F, G, K) show no appreciable difference in

coefficients/effect sizes compared to the estimates

from corresponding four-year graduation rates
models. As a result, we believe the four-year gra-

duation indicator, although not ideal, still provides

reliable evidence to help us explore the relationship

between contextualized measures and graduation.

4. Results

4.1 Descriptive Findings (Tables 1–3)

Tables 1 and 2 show descriptive statistics for the full

sample of students in our dataset, as well as a

comparison of our engineering (N = 9,445) and

non-engineering (N = 68,359) samples. Compared

to the non-engineering sample, the engineering

sample has a smaller proportion of underrepre-
sented students of color and a larger proportion

ofWhite andAsian students. Over two thirds of our

engineering students are men, while over 60 percent

of non-engineering students are women in our full

sample. Our engineering sample also has a smaller

proportion of Pell recipients compared to the non-

engineering sample. High school demographics in

Table 2 further show that compared to the non-
engineering students, engineering students are dis-

proportionately concentrated in schools with lower

proportions of underrepresented students of color,

and schools with lower proportions of students who

received free and reduced-price lunch. On average,

engineering students have higher raw and contex-

tualized high school GPAs and higher raw and

contextualized ACT composite scores compared
to non-engineering students. Engineering students

also tend to have taken more rigorous high school

math and science courses than their non-engineer-

ing peers.

Table 3 shows descriptive statistics for minor-
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itized students of color, Pell recipients, and women

within our engineering sample, to show how indi-

cators of high school performance and college
success differ descriptively for these subgroups.

Underrepresented students of color on average

have lower high school GPAs and ACT composite

scores, both raw and contextualized, compared to

Pell recipients and women. Underrepresented stu-

dents of color also tend to have lower first-year

college GPAs, lower retention and graduation rates

within engineering major compared to their peers.

4.2 Analytical Findings (Tables 4–8)

Findings reveal that our variables of interest (i.e.

raw and contextualized measures of high school
GPA, ACT composite scores, and high school

science math/science curriculum rigor) are signifi-

cantly associated with various college success indi-

cators (i.e. first-year college GPA, first-year college

retention within engineering, and graduating with

an engineering degree within four years). The

specific strength of these relationships across insti-

tutions in our sample vary, however; we present
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Table 1. Descriptive statistics of sample

Variable

All Engineering Non-Engineering

% N % N % N

Race/ethnicity

Asian 5.4 4,217 8.0 758 5.1 3,459

Black 8.9 6,905 5.7 535 9.3 6,370

Latinx 4.4 3,431 3.6 339 4.5 3,092

White 75.1 58,428 76.8 7,254 74.9 51,174

Multiracial 3.9 3,041 3.3 310 4.0 2,731

Haw./Pac. Islander 0.1 54 0.1 10 0.1 44

Unknown 2.2 1,728 2.5 239 2.2 1,489

Gender

Male 44.4 34,553 78.4 7,400 39.7 27,153

Female 55.6 43,251 21.6 2,045 60.3 41,206

Pell status

Pell 27.7 21,519 23.7 2,241 28.1 19,278

Non-Pell 72.3 56,285 76.3 7,204 71.9 49,081

High School Urbanicity

City 18.7 14,522 20.0 1,894 18.5 12,628

Suburb 48.8 37,956 48.3 4,560 48.9 33,396

Town 11.1 8,647 11.2 1,055 11.1 7,592

Rural 21.4 16,679 20.5 1,936 21.6 14,743

Table 2. Descriptive statistics of sample (continued)

Variable

All Engineering Sample
Non-Engineering
Sample

N Mean Min Max N Mean N Mean

High School Demographics

School % Free/Reduced-Price Lunch 77,787 32.6% 4.5% 99.8% 9,443 30.3% 68,344 32.9%

School % URM 77,787 19.5% 0.0% 100.0% 9,443 17.9% 68,344 19.7%

School Expenditures per FTE 77,787 $9,824 $7,098 $36,954 9,443 $9,781 68,344 $9,830

High School Performance

High School GPA 77,804 3.42 0.65 4.00 9,445 3.57 68,359 3.40

Contextualized HS GPA* 77,796 0.49 –4.36 3.47 9,443 0.64 68,353 0.47

ACT Composite 77,708 23.47 11.00 36.00 9,435 25.76 68,273 23.15

Contextualized ACT Composite* 77,700 0.62 –2.88 5.42 9,433 1.02 68,267 0.56

Math Level 77,348 4.60 2.00 8.00 9,375 5.61 67,973 4.46

Science Level 77,804 4.80 2.00 9.00 9,445 5.18 68,359 4.75

Contextualized Math Level 77,348 –0.82 –2.97 1.49 9,375 –0.09 67,973 –0.92

Contextualized Science Level 77,804 –0.37 –2.97 2.98 9,445 –0.15 68,359 –0.40

College Success Indicator

First-Year College GPA 77,803 2.97 0.00 4.00 9,445 2.92 68,358 2.98

Note: Contextualized variables are in standard deviation units.



these results in more detail in the section below. It is

important to keep in mind that interpretations for

coefficients/odds ratios in eachmodel depend on the

independent variable in question. Coefficients for

models involving raw high school GPA, for exam-

ple, should be interpreted as the change in the
dependent variable associated with a 0.1-point

change in high school GPA; coefficients for

models involving raw ACT composite scores repre-

sent the change in the dependent variable associated

with a one-point change in ACT composite scores;

coefficients for models with raw high school math/

science curriculum rigor show the change in the

dependent variable linked to a one-unit increase of
raw math/science level attainment. Coefficients for

models with contextualized measures, on the other

hand, show the change in the dependent variable

associated with a one standard deviation unit

increase in the independent variable.

4.3 College GPA (Tables 4–5)

Rawmeasures of high school GPA are significantly

associated with first-year GPA across all institu-

tions in our sample; the effect size associated with

this relationship is 0.261 for all institutions. Simi-

larly, contextualized measures of high school GPA
are also associated with first-year GPA, albeit with

a somewhat smaller effect size of 0.197 across all

institutions. As Table 4 illustrates, at Institution G,

for example, a 0.1-point increase in high school

GPA is associated with a 0.127-point increase in

first-year GPA and accounts for 29.5% of the

residualized variation in a student’s first-year

GPA. A one standard deviation increase in high
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Table 3. Descriptive statistics of sample - Engineering students

Variable

Minoritized Students
of Color Pell Recipients Women

All Engineering
Students

N Mean N Mean N Mean N Mean

High School Performance

High School GPA 884 3.31 2,241 3.54 2,045 3.73 9,445 3.57

Contextualized HS GPA* 884 0.61 2,240 0.71 2,043 0.84 9,443 0.64

ACT Composite 882 22.27 2,237 24.58 2,045 26.45 9,435 25.76

Contextualized ACT Composite* 882 0.77 2,236 1.00 2,043 1.12 9,433 1.02

College Success Indicators

1st-year GPA 884 2.48 2,241 2.97 2,045 3.12 9,445 2.92

1st-year Retention Rates (%) 884 62.2% 2,241 79.4% 2,045 76.1% 6,811 72.1%

4-year Graduation Rates (%) 578 12.6% 1,428 25.4% 1,312 38.9% 6,160 29.3%

Note: Contextualized variables are in standard deviation units.

Table 4. Engineering: Coefficients and effect sizes for high school GPA variables and first-year college GPA

Inst. N

HS GPA
Contextualized
HS GPA

N

ACT Composite
Contextualized
ACT Composite

Coeff Eff Size Coeff Eff Size Coeff Eff Size Coeff Eff Size

Total 9,287 0.110*** 0.261 0.652*** 0.197 9,277 0.054*** 0.062 0.215*** 0.048

A 147 0.088*** 0.205 0.610*** 0.171 147 0.060*** 0.076 0.274*** 0.079

B 207 0.082*** 0.156 0.466*** 0.123 207 0.016 0.003 0.034 0.001

C 391 0.110*** 0.279 0.783*** 0.243 391 0.061*** 0.057 0.299*** 0.067

D 589 0.111*** 0.250 0.711*** 0.196 587 0.054*** 0.056 0.231*** 0.047

E 94 0.106*** 0.335 0.747*** 0.302 94 0.049* 0.055 0.200 0.043

F 1,736 0.104*** 0.181 0.521*** 0.120 1,734 0.038*** 0.042 0.142*** 0.029

G 1,626 0.127*** 0.295 0.815*** 0.234 1,626 0.046*** 0.043 0.193*** 0.035

H 105 0.103*** 0.296 0.735*** 0.278 105 0.069* 0.051 0.355** 0.066

I 672 0.110*** 0.327 0.689*** 0.268 670 0.075*** 0.125 0.321*** 0.108

J 200 0.096*** 0.315 0.658*** 0.261 200 0.070*** 0.113 0.311*** 0.110

K 1,629 0.232*** 0.137 0.283*** 0.020 1,629 0.050*** 0.053 0.152*** 0.026

L 532 0.100*** 0.270 0.559*** 0.194 531 0.068*** 0.099 0.246*** 0.068

M 104 0.125*** 0.416 0.841*** 0.352 103 0.026 0.013 0.118 0.013

N 483 0.108*** 0.339 0.573*** 0.239 482 0.084*** 0.126 0.311*** 0.099

O 772 0.105*** 0.263 0.752*** 0.247 771 0.038*** 0.027 0.171*** 0.028

Notes: ***p < 0.001, **p < 0.01, *p < 0.05. Each coefficient/effect size represents an individual linear regression model with all covariates
and fixed effects.



school GPA from one’s high school median, on the

other hand, is linked to a 0.815-point increase in
first-year GPA, accounting for 23.4% of residua-

lized variation in first-year GPA.

ACT composite scores – in both raw and con-

textualized form – are also significantly associated

with first-year college GPA across the majority of

institutions in our sample (Table 4). To continue

with Institution G, for instance, a 1-point increase

in raw ACT composite scores is associated with a
0.046-point increase in first-year college GPA,

which accounts for 4.3% of residualized variation

in the dependent variable. A one standard deviation

increase in ACT composite scores from one’s high

schoolmedian, on the other hand, is associated with

a 0.193 increase in first-year GPA, which accounts

for 3.5% of residualized variation. Effect sizes for

the relationship between ACT composite scores
and college GPA, however, are notably smaller

than those observed above for high school GPA

(as illustrated by Fig. 1): while overall effect sizes for

the relationship between raw and contextualized

high school GPA and college GPA are 0.261 and

0.197 respectively, the effect sizes associated with

the relationship between raw and contextualized

ACT composite scores and college GPA remain
0.062 and 0.048 respectively. This provides evidence

that measures related to high school GPA display a

stronger relationship with first-year college GPA

than do measures related to ACT scores.

Table 5 portrays the relationship between high

school math and science curriculum rigor levels and

first-year college GPA, respectively. As would be

expected from the literature, high school math

curriculum level – whether raw or contextualized–
displays a statistically significant relationship with

first-year college GPA across the majority of insti-

tutions in our sample. However, the effect sizes

obtained for this relationship are smaller than

those obtained for high school GPA and ACT

composite scores. Our models produce an overall

effect size of 0.041 for the relationship between raw

math curriculum level and first-year college GPA,
which is noticeably smaller than above-mentioned

effect sizes for raw high school GPA (0.261) or raw

ACT composite scores (0.062). At InstitutionG, for

example, each unit increase in raw math level

attainment accounts for 3.5% of residualized varia-

tion in first-year college GPA; each unit increase in

contextualized math level attainment accounts for

3.2% of residualized variation. High school science
curriculum rigor levels and first-year college GPA

display an even weaker relationship – with fewer

institutions across our sample showing statistical

significance, and even those with significant results

showing the smallest effect sizes out of all indepen-

dent variables of interest tested in our study (0.017

for raw, and 0.010 for contextualized high school

science curriculum rigor across all institutions in
our engineering sample).

4.4 First-Year Retention Within Engineering

(Table 6)

At the majority of institutions in our sample, both

raw and contextualized high school GPA are

significantly associated with first-year retention;
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Table 5. Engineering: Coefficients and effect sizes for high school math and science curriculum rigor levels and first-year college GPA

Inst. N

Math Level
Contextualized
Math Level

N

Science Level
Contextualized
Science Level

Coeff Eff Size Coeff Eff Size Coeff Eff Size Coeff Eff Size

Total 9,219 0.093*** 0.041 0.120*** 0.039 9,289 0.095*** 0.017 0.089*** 0.010

A 148 0.179*** 0.131 0.198*** 0.115 148 0.055 0.004 0.093 0.011

B 206 0.027 0.003 0.014 0.001 207 0.065 0.004 0.012 0.000

C 391 0.102*** 0.037 0.152*** 0.052 391 0.126* 0.013 0.130** 0.016

D 589 0.086*** 0.039 0.100*** 0.030 589 0.136*** 0.036 0.111** 0.015

E 94 0.055 0.012 0.122 0.040 94 0.007 0.000 0.063 0.003

F 1,727 0.056*** 0.020 0.078*** 0.023 1,736 0.064*** 0.012 0.063*** 0.008

G 1,613 0.084*** 0.035 0.108*** 0.032 1,626 0.074*** 0.010 0.074*** 0.007

H 104 0.181 0.054 0.158 0.036 105 0.070 0.002 0.026 0.000

I 668 0.200*** 0.139 0.250*** 0.131 673 0.193*** 0.051 0.217*** 0.048

J 199 0.087** 0.044 0.113** 0.042 200 0.127 0.015 0.126 0.018

K 1,608 0.053*** 0.014 0.057*** 0.009 1,629 0.046*** 0.008 0.021 0.001

L 531 0.086*** 0.038 0.115*** 0.038 532 0.122*** 0.024 0.088* 0.010

M 100 0.106 0.037 0.135 0.040 104 0.067 0.004 0.124 0.011

N 477 0.138*** 0.083 0.180*** 0.079 483 0.146*** 0.032 0.135** 0.022

O 764 0.087*** 0.034 0.109*** 0.030 772 0.104*** 0.015 0.055 0.003

Notes: ***p < 0.001, **p < 0.01, *p < 0.05. Each coefficient/effect size represents an individual linear regression model with all covariates
and fixed effects.



effect sizes obtained for these relationships are

generally much smaller compared to those asso-

ciated with college GPA. At Institution C, for

example, a 0.1-point increase in raw high school
GPA is associated with 1.110 higher odds of first-

year retention (11% higher), accounting for 3.1%

of the residualized variation in first-year retention.

At the same institution, a one standard deviation

increase in high school GPA from one’s high

school median is associated with 2.604 higher
odds of first-year retention, accounting for 4.0%

of the residualized variation in first-year retention.
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Table 6. Engineering: Odds ratios and effect sizes for high school GPA variables and first-year retention

Inst. N

HS GPA
Contextualized
HS GPA

N

ACT Composite
Contextualized
ACT Composite

Odds
Ratio Eff Size

Odds
Ratio Eff Size

Odds
Ratio Eff Size

Odds
Ratio Eff Size

Total 9,287 1.119*** 0.031 2.022*** 0.026 9,277 1.035*** 0.003 1.163*** 0.002

A 146 1.009 0.000 1.094 0.000 146 0.990 0.000 1.042 0.000

B 207 1.039 0.005 1.473 0.013 207 1.025 0.001 1.007 0.000

C 391 1.110*** 0.031 2.604*** 0.040 391 1.047 0.004 1.351 0.008

D 587 1.147*** 0.045 2.821*** 0.049 585 1.091** 0.018 1.584*** 0.022

E 88 1.263** 0.132 6.462** 0.156 88 1.132 0.028 2.073* 0.050

F 1,736 1.176*** 0.029 2.560*** 0.026 1,734 1.018 0.001 1.103 0.001

G 1,622 1.191*** 0.052 3.391*** 0.046 1,622 1.062** 0.006 1.300** 0.005

H 100 1.109* 0.065 2.096* 0.063 100 1.115 0.029 1.740* 0.036

I 672 1.125*** 0.061 2.063*** 0.048 670 1.080*** 0.022 1.383*** 0.018

J 198 1.122** 0.054 1.857* 0.028 198 1.081 0.017 1.229 0.006

K 1,629 0.908 0.001 0.850 0.000 1,629 0.853*** 0.024 0.598*** 0.015

L 528 1.082** 0.018 1.689** 0.017 527 1.038 0.003 1.082 0.001

M – – – – – – – – – –

N 483 1.109*** 0.039 1.745*** 0.028 482 1.063* 0.009 1.225 0.005

O 772 1.130*** 0.053 2.385*** 0.049 771 1.075*** 0.015 1.336** 0.012

Notes: *** p< 0.001, ** p< 0.01, * p< 0.05. Each odds ratio/effect size represents an individual linear regressionmodel with all covariates
and fixed effects. The sample size of engineering students at institutionMwas very small, and there was not enough variation in first-year
retention rates to complete/support a logistic regression;we therefore removed them from the subsample analysis. This institutionwas still
included in the logit model across all institutions (estimates for ‘‘Total’’).

Fig. 1. Effect sizes for high school GPA and ACT composite scores on first-year college GPA.



The estimates for the relationship between high

school GPA-related measures and first-year col-

lege retention are statistically significant for the

overall estimates of all institutions in our engineer-

ing sample, and the effect size for the relationship

between contextualized high school GPA and first-
year college retention is 0.026 – which is slightly

smaller than the effect size for raw high school

GPA and first-year retention (0.031). In contrast,

ACT composite scores are not consistently asso-

ciated with first-year retention across institutions

in our sample. Less than half of the institutions in

our engineering sample display a significant rela-

tionship between raw or contextualized ACT com-
posite scores and first-year retention within the

engineering major. Even those institutions show-

ing statistically significant relationships show

much smaller effect sizes compared to those

obtained for the relationship between high school

GPA-related measures and first-year retention.

This tendency for high school GPA-related mea-

sures to display stronger relationships with college
retention than do ACT-related measures has also

been noted for models using college GPA as a

success indicator. On average, a 1-point increase in

raw ACT composite score is associated with 1.035

higher odds (3.5% higher) of first-year retention

within engineering major; a one standard devia-

tion increase in ACT composite scores from one’s

high school median is associated with 1.163 higher

odds (16.3% higher) of first-year retention within

engineering major.

4.5 Four-Year Graduation Within Engineering

(Table 7)

In general, we observe a statistically significant

relationship between raw and contextualized mea-

sures of high school GPA and four-year graduation

across the institutions in our sample. For the

majority of institutions in our engineering sample,

effect sizes for raw high school GPA are slightly

larger than those obtained for its contextualized

counterpart in relation to four-year graduation
within engineering major. At five institutions in

our sample, however, contextualized high school

GPAdisplays an even larger effect size for four-year

college graduation than does raw high school GPA.

At Institution G, for instance, a 0.1-point increase

in raw high school GPA is associated with 1.281

higher odds (28.1% higher) of graduating with an

engineering degree within four years, accounting
for 7.8% of the residualized variation in the gradua-

tion rate; for students with high school GPAs one

standard deviation above their high school median

GPA, odds of graduating with an engineering

degree within four years are approximately six
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Table 7. Engineering: Odds ratios and effect sizes for high school GPA variables and four-year college graduation

Inst. N

HS GPA
Contextualized
HS GPA

N

ACT Composite
Contextualized
ACT Composite

Odds
Ratio Eff Size

Odds
Ratio Eff Size

Odds
Ratio Eff Size

Odds
Ratio Eff Size

Total 6,121 1.298*** 0.054 5.068*** 0.052 6,114 1.111*** 0.020 1.611*** 0.019

A 105 1.276*** 0.111 4.039* 0.074 105 1.123 0.035 1.579 0.024

B 143 1.368*** 0.093 8.525*** 0.100 143 1.174 0.027 1.914* 0.023

C 245 1.149*** 0.049 3.323*** 0.059 245 1.103* 0.021 1.694* 0.029

D 375 1.326*** 0.060 9.767*** 0.068 374 1.150** 0.023 1.820** 0.020

E 40 – – – – – – – – –

F 1,139 1.327*** 0.052 5.186*** 0.046 1,138 1.106*** 0.018 1.534*** 0.015

G 1,058 1.281*** 0.078 6.123*** 0.088 1,058 1.099*** 0.021 1.570*** 0.022

H 46 – – – – – – – – –

I 396 1.427*** 0.146 10.145*** 0.135 394 1.206*** 0.076 2.309*** 0.071

J 119 – – – – – – – – –

K 1,099 1.355*** 0.016 2.691*** 0.017 1,099 0.982 0.001 1.055 0.000

L 306 1.478*** 0.074 9.535*** 0.063 305 1.270*** 0.065 2.678*** 0.058

M – – – – – – – – –

N 304 1.370*** 0.103 4.464** 0.063 304 1.297*** 0.080 2.872*** 0.059

O 508 1.332*** 0.060 8.207*** 0.057 507 1.170*** 0.030 1.943*** 0.027

Notes: *** p< 0.001, ** p< 0.01, * p< 0.05. Each odds ratio/effect size represents an individual linear regressionmodel with all covariates
and fixed effects. While we do have estimates for institutions E, H, and J, these estimates may be biased because only 40 students from
institution E, 46 students from institution H, and 119 students from institution J qualified as an engineering student. We therefore
eliminated these students fromour subsample analyses. Observations from these institutionswere still included to obtain estimates across
all institutions (estimates for ‘‘Total’’). Also, the sample size of engineering students at institution M was very small, and there was not
enough variation four-year college graduation to complete/support a logistic regression; we therefore removed them from the subsample
analysis. This institution was still included in the logit model across all institutions (estimates for ‘‘Total’’).



times greater, accounting for an estimated 8.8% of

the residualized variation.

Similar to our findings regarding college GPA

and first-year retention, four-year graduation also
displays a comparatively stronger relationship with

high school GPA-related measures than with ACT-

related measures. For the overall estimates of the

engineering sample, a one unit increase in raw and

contextualized high school GPA accounts for 5.4%

and 5.2% of the residualized variation in four-year

graduation within engineering major, respectively.

In contrast, a 1-point increase in ACT composite
score and a one standard deviation increase in ACT

composite scores from one’s high school median

account for 2.0% and 1.9% of the residualized

variation in four-year graduation in engineering,

respectively.

An interesting trend is that both raw and con-

textualized measures of high school GPA and ACT

composite scores are more strongly associated with
college persistence as students progress into their

college careers. As illustrated in Fig. 2, the strength

of the relationship (effect size) between contextua-

lized high school GPA and college GPA is stron-

gest; the effect size is comparatively weaker for

four-year graduation, and is the weakest for first-

year retention.

4.6 Split Sample Analysis (Table 8)

We further examine how the relationship between

contextualized high school performance and college

success might differ for different populations within

engineering students. Table 8 shows how the rela-

tionship between college success indicators and

contextualized high school GPA (Panel A), as well
as the relationship between college success indica-

tors and contextualized ACT composite scores

(Panel B), differ among various subgroups of inter-

est in engineering. Similar to what we witnessed for

the overall sample of engineering students, our

findings for the Pell recipients, underrepresented

students of color, and women also show that

contextualized high school GPA is significantly
associated with all three college success indicators

(first-year college GPA, retention and graduation

within engineering major). Coefficients/odds ratios

and effect sizes obtained for the split sample analy-

sis are generally slightly smaller than those obtained

from the full engineering sample (Panel A). Across

all three sub-samples, contextualized ACT compo-

site score is significantly associated with first-year
collegeGPA as well as graduating with an engineer-

ing degree within four years (Panel B). For Pell

recipients and women, the relationship between

contextualized ACT composite score and first-

year retention within engineering is not statistically

significant.

It is worth noting that the relationships between

contextualized ACT composite score and first-year
college GPA (and four-year graduation within

engineering) are at times stronger in our student

subgroups than in our full engineering sample, in
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Fig. 2.Effect sizes for contextualized high school GPAon first-year collegeGPA, retention after the first year, and graduationwithin four
years.



terms of odds ratio and effect sizes. For instance,

one standard deviation increase in ACT composite

score from one’s high school median is related to a
0.215 point increase in first-year GPA for the full

engineering sample, accounting for 4.8% of the

residualized variation. In contrast, for female engi-

neering students, a one standard deviation increase

in ACT composite score from one’s high school

median is related to a 0.217 point increase in first-

year GPA, accounting for 6.6% of the residualized

variation. These estimates suggest that contextua-
lized measures of high school performance are

consistently related – or even have a stronger

relationship – with college success, for all three

traditionally underrepresented student groups in

our engineering sample. These findings suggest

that contextualized measures of high school perfor-

mance will be particularly useful in identifying

traditionally underrepresented students who have
the potential to succeed in engineering programs.

5. Discussion and Implications

Our findings present important implications on the

meaningfulness and effectiveness of incorporating
contextualizedmeasures into admissions to identify

students who have the potential to succeed in

college. Our findings are in line with the recommen-

dations from The Standards for Educational and

Psychological Testing [48], which underscores the

importance of incorporating other variables in

addition to raw test scores to avoid inappropriate

score interpretations in making high-stakes indivi-
dual decisions. According to the Standards, test

scores should not be used as sole indicators to

characterize an individual’s competence or atti-

tudes; instead, ‘‘multiple sources of information

should be used, alternative explanations for test

performance should be considered, and the profes-

sional judgment of someone familiar with the test

should be brought to bear on the decision’’ (p. 71).
The standards specifically mention that ‘‘opportu-

nity to learn’’ is a variable that may need to be

considered in educational settings as it can seriously

affect students’ academic performance and ‘‘the

validity of test score interpretations’’ (p. 72), and

that neglecting this factor may result in ‘‘misdiag-

noses, inappropriate placements and/or services,

and unintended negative consequences’’ (p. 71).
As a result, even though our analysis admittedly

shows that contextualized measures of high school

performance generally display slightly smaller effect

sizes than their raw counterparts in their relation-

ship to college success, we need to keep in mind that

admission credentials should not be defined solely

on the strength of its correlation to college perfor-

mance. Instead, admission officers should consider
students’ learning opportunities and measures to

assess their achievement in the context of their high

school environments. Contextualized assessment

has the potential to evaluate students’ academic

achievement in a more equitable and appropriate

way and help expand college access to a broader,

more diverse population of engineering students

with the potential to succeed in college.
That being said, it is still noteworthy that we also

found cases where contextualized measures dis-

played an even larger effect size than raw measures.

This bolsters our argument that using not only raw

measures of high school GPA but also their con-

textualized form, which incorporates contextual

information that raw measures do not take into

account, may be useful in identifying students with
academic potential as well as pursuing equity in

admissions. For instance, contextualized high

school GPA displays a larger effect size in relation
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Table 8. Split Sample Analysis: Contextualized high school performance and college success

Panel A: Contextualized HS GPA

1-yr GPA 1-yr Retention 4-yr Graduation

Coeff. Effect Size N Odds Ratio Effect Size N Odds Ratio Effect Size N

Pell 0.400*** 0.154 2,191 1.347** 0.004 2,136 3.395*** 0.029 1,394

URM 0.492*** 0.143 873 1.493** 0.012 861 5.517*** 0.019 445

Women 0.633*** 0.183 2,021 1.992*** 0.014 2,009 4.518*** 0.040 1,280

Overall 0.652*** 0.197 9,287 2.022*** 0.026 9,287 5.068*** 0.052 6,121

Panel B: Contextualized ACT Composite

1-yr GPA 1-yr Retention 4-yr Graduation

Coeff. Effect Size N Odds Ratio Effect Size N Odds Ratio Effect Size N

Pell 0.156*** 0.051 2,187 0.954 <0.001 2,132 1.422*** 0.011 1,392

URM 0.158*** 0.029 871 1.224* 0.005 859 2.103*** 0.019 444

Women 0.217*** 0.066 2,021 1.150 0.002 2,009 1.387*** 0.010 1,280

Overall 0.215*** 0.048 9,277 1.163*** 0.002 9,277 1.611*** 0.019 6,114

Notes: ***p < 0.001, **p < 0.01, *p < 0.05.



to four-year college graduation within engineering

than does raw high school GPA at about half the

institutions in our sample. Estimates from our split

sample analysis also suggest that not only are

contextualized measures of high school perfor-

mance consistently related to college success for
all three traditionally underrepresented student

groups, there are some cases where contextualized

measures have larger effect sizes, and thus display a

stronger relationship with college success outcomes

for underrepresented students than for the full

sample of engineering students. For instance, as

we mentioned in the results section, for female

engineering students, contextualized ACT compo-
site scores have a larger effect size in relation to first-

year college GPA, than the effect size of the

corresponding estimates for the full engineering

sample. This suggests using contextualized ACT

scores when making admissions decisions may be

particularly useful for identifying women who are

likely to succeed in four-year engineering programs,

particularly as raw ACT scores consistently under-
predict the achievement of college women [49]. Our

findings also inform recent interventions to use

more contextualized measures in college admis-

sions, such as Landscape, which has been found

to significantly increase the proportion of students

admitted from underrepresented high schools and

neighborhoods [50, 51].

Our findings also provide insights into how to use
high school curriculum rigor in engineering admis-

sions. High schools with comparatively fewer

resources – in which low-SES, underrepresented

students of color are disproportionately concen-

trated – are limited in the number of advanced

STEM-related courses they provide [52]. Factors

such as these disadvantage such students in admis-

sions [3, 52]. Yet our results show that contextua-
lized measures of curriculum rigor – which indicate

how far a student progressed in math and science

courses offered by their high school – show similar

levels of significance and comparable effect sizes to

raw measures of course rigor, in terms of their

relationship with college GPA. Moreover, both

raw and contextualized measures of high school

course rigor display a weaker relationship with
college GPA than do other measures of high

school performance such as high school GPA and

standardized test scores. In fact, high school science

curriculum rigor shows the smallest effect size in its

relationship with first-year college GPA among all

measures of high school performance we tested in

this study; this relationship is also not statistically

significant in some of our sample institutions. This
raises the possibility that institutions may benefit by

evaluating students’ high school course back-

grounds in context of the course offerings that

had been available to the student, and thus placing

less emphasis on raw high school science course

rigor when evaluating students in engineering

admissions. Doing somay help remove unnecessary

barriers for students coming from high schools with

more expansive course offerings.
On a final note, although this paper focused

solely on evaluating academic achievement in light

of high school context, we also draw attention to the

possibility that evaluating non-academic indicators

within students’ own respective contexts may also

be a promising way to improve equity in admissions

for underrepresented students in engineering.

Recent studies show that extracurricular activities
are yet another way for privileged students to

distinguish themselves in college admissions [53,

54]. High schools with greater resources are able

to provide students with not only quantitatively

more extracurricular opportunities [54], but also

qualitatively better extracurriculars [53]. Higher-

resourced schools also tend to provide more tai-

lored support, making it easier for students attend-
ing these schools to show distinction in a way

valued by admissions officers [54]. Future studies

may examine possible ways to contextualize extra-

curricular performance, and whether using these

measures may help improve equity in admissions

for underrepresented students in engineering.

6. Conclusions

Based on data from a Midwestern state’s Depart-

ment of Education, our analysis shows that both

raw and contextualized measures of high school

performance have strong, statistically significant

relationships with engineering students’ college

success. In particular, among all the raw and
contextualized measures of high school perfor-

mance we examined, high school GPA appears to

have the most consistent, strongest relationship

with first-year college GPA, first-year retention,

and four-year graduation within engineering. The

strength of the relationship between measures of

high school GPA and various indicators of college

success has important implications for institutions
going test-optional or test-blind, the number of

which has been increasing enormously since the

COVID-19 pandemic. Contextualized high school

grades may be particularly helpful in conducting a

holistic review of applicants in engineering pro-

grams that are implementing test-optional and

test-blind admissions.

Our findings demonstrate the meaningfulness
and effectiveness of incorporating contextualized

measures into admissions to identify students with

academic potential as well as pursue equity in

engineering admissions. Our split sample analysis
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further provides supportive evidence for using con-

textualized measures to identify underrepresented

student populations (women, underrepresented

students of color, and low-income students) who

are likely to succeed in engineering programs,

narrowing the enrollment gaps between these stu-
dent populations and their more privileged counter-

parts in engineering majors.
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